Lenovo

Enabling Intel Optane DC Persistent Memory on Lenovo ThinkSystem Servers

Introduces the new DCPMMs for Lenovo servers

Explains the Lenovo tools to performance management functions

Describes operating system support and OS-supplied tools

Describes the tools available for heath checking and diagnostics

Sumanta K. Bahali Paul Klustaitis Jason Liu Sumeet Kochar Samer El-Haj-Mahmoud

Abstract

Lenovo has engineered ThinkSystem servers incorporating second-generation Intel Xeon Scalable processors to take advantage of features provided by Intel Optane DC Persistent Memory.

This paper describes the overall implementation of DC Persistent Memory Modules (DCPMMs) on Lenovo ThinkSystem. The paper describes the supported modes, the population requirements when both DDR4 DIMMs and DCPMMs are installed, the health monitoring features and both out-of-band and in-band management of DCPMMs.

This paper assumes that the reader is familiar with standard server memory DIMMs and how DIMMs are typically used in servers. The reader will learn how to use Intel DCPMMs as storage as well as volatile memory on a Lenovo ThinkSystem server.

At Lenovo Press, we bring together experts to produce technical publications around topics of importance to you, providing information and best practices for using Lenovo products and solutions to solve IT challenges.

See a list of our most recent publications at the Lenovo Press web site:

http://lenovopress.com

Do you have the latest version? We update our papers from time to time, so check whether you have the latest version of this document by clicking the **Check for Updates** button on the front page of the PDF. Pressing this button will take you to a web page that will tell you if you are reading the latest version of the document and give you a link to the latest if needed. While you're there, you can also sign up to get notified via email whenever we make an update.

Contents

troduction	. 5
lodes of operation	. 5
CPMM Support on ThinkSystem servers.	. 7
lemory Configurator	
opulation rules	. 8
lanaging DCPMMs in ThinkSystem servers	10
perating system support	
lanagement in operating systems	19
ealth management.	21
loving DCPMMs to a new system board	
ecurity	
EFI Event IDs and Messages	25
urther reading	
uthors	26
otices	27
rademarks	28

Introduction

Intel Optane DC Persistent Memory was announced along with the second-generation Intel Xeon Scalable Processors in 2019. DC Persistent Memory Modules (DCPMM) are next-generation memory modules that introduced Optane Media technology in a DDR4 form factor. DCPMMs have the form factor of a standard DDR4 DIMM with full-length heat spreader. Figure 1 shows an Intel DC Persistent Memory Module

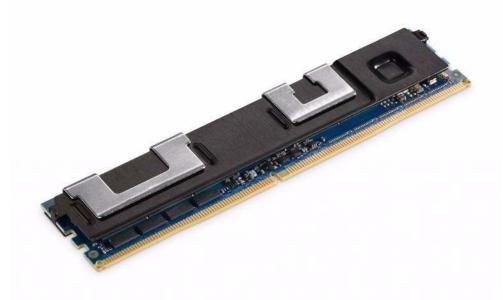


Figure 1 Intel DC Persistent Memory Module

Supported operating modes are Memory Mode (volatile) and App Direct Memory mode (persistent memory). Users can also configure DCPMM as a Block storage device using NVDIMM device drivers, while DCPMM is configured in App Direct Mode.

Intel DCPMMs are available in 128GB, 256GB and 512 GB capacities, and are capable of running at a maximum speed of 2666 MT/s.

Modes of operation

DCPMMs support two modes of operation;

- Memory Mode (also known as 2LM)
- Persistent Memory Mode (also known as PM or App Direct)

Users can configure DCPMM into mixed mode, to enable both modes of operation at the same time (that is, a portion of the DCPMM is used in Memory Mode, while the rest is used in Persistent Mode).

Memory mode

Memory mode has the following characteristics:

► In this mode, DCPMM functions like a standard DDR4 memory

- Memory mode provides for large memory capacity at lower cost but at a lower performance than standard DRAMs.
- DDR4 standard DRAM DIMMs (henceforth referred to as DIMMs) are still required for normal system usage. DIMMs in system are used as cache for DCPMMs. See "Population rules" on page 8 for details.
- Software/Application changes are not required, but there could be OS enablement dependency. See "Operating system support" on page 18.

Like a standard DIMM, the data is volatile in Memory mode. The encryption key used to encrypt the data is cleared upon power cycle which ensures data volatility.

App Direct Mode (Persistent Mode)

App Direct Mode has the following characteristics:

- In App Direct mode, data written to the DCPMM is persistent across power cycle and resets. This is similar to NVDIMM_N operation, but unlike NVIDMM-N, DCPMM does not require any backup energy source.
- App Direct mode allows the application to directly read/write NVM address space without a driver. Applications will have to be modified and tuned for this mode. This is again similar to NVDIMM-N
- Data at rest in the DCPMM is encrypted and access is restricted via user passphrase if end-user enables security.

Storage over App Direct

In this mode, the DCPMMs are still configured in App Direct mode but NVDIMM driver allows the applications use the Persistent memory as a Block device

- DCPMM operates in Blocks like SSD/HDD
- Support traditional read/write
- Support 512B and 4KB Block under Linux
- Support only 4KB Block under Windows

Figure 2 on page 7 shows how an unchanged application uses the DCPMM as a storage device. DCPMMs should be configured in App Direct mode by UEFI.

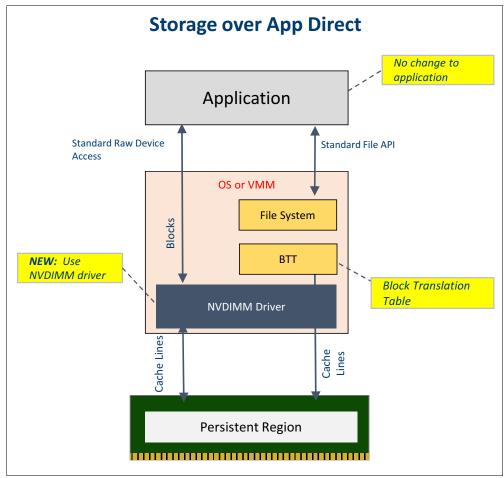


Figure 2 Storage Over App Direct

DCPMM Support on ThinkSystem servers

Intel DCPMM is supported on many of the Lenovo ThinkSystem servers. Table 1 lists the scope of support.

Server model	Number of memory slots supported	Max number of DCPMM supported	Available capacities (GB)	Modes supported
SR950	96	48	128, 256, 512	Memory, App Direct, Mixed
SR860	48	24	128, 256, 512	Memory, App Direct, Mixed
SR850	48	24	128, 256, 512	Memory, App Direct, Mixed
SD650	16	4	128, 256, 512	Memory, App Direct, Mixed
SD530	16	4	128,256,512	Memory, App Direct, Mixed
SN850	48	24	128, 256, 512	Memory ^a
SN550	24	12	128, 256, 512	Memory ^a

Table 1 DCPMM support scope on Lenovo ThinkSystem

Server model	Number of memory slots supported	Max number of DCPMM supported	Available capacities (GB)	Modes supported
SR650	24	12	128, 256, 512	Memory, App Direct, Mixed
SR630	24	12	128, 256, 512	Memory, App Direct, Mixed
SR590	16	4	128, 256, 512	Memory, App Direct, Mixed
SR570	16	4	128, 256, 512	Memory, App Direct, Mixed

a. The SN850 and SN550 only support App Direct Mode and Mixed Mode under special bid conditions.

Memory Configurator

The memory configuration utility in Lenovo's Data Center Solution Configurator (DCSC) should always be used to determine the optimal DCPMM / DIMM configuration. The configurator uses the population rules and suggests valid DIMM / DCPMM configurations, per user inputs.

The memory configurator is located at:

https://dcsc.lenovo.com/#/memory configuration

The memory configurator will help users choose a memory / DCPMM configuration based on user-input, such as system, number of CPUs, memory capacity, App Direct capacity and mode (performance or cost). The memory configurator will produce DIMM / DCPMM configuration options based on best price or best performance criteria. Once the user has completed their configuration, the configurator will link the configuration to our manufacturing process.

Population rules

The rules for configuring DCPMMs are as follows:

- DCPMM is supported with selected SKUs of second generation of Intel® Xeon® Scalable processors:
 - All Platinum processors
 - All Gold processors
 - Silver 4215 processor
- Systems can support 16GB, 32GB, 64GB,128GB and 256GB DIMM and DCPMM together
- When DCPMM is configured in Memory Mode or Mixed Mode, the ratio of DDR4 Memory to Persistent Memory must be between 1:4 and 1:16. This ratio is not applicable to App Direct mode of DCPMM
- The processor must support the total amount of memory installed both DDR4 memory and persistent memory.
 - "L" SKU CPU is required to support memory capacity up to 4.5TB.
 - "M" SKU CPU is required to support memory capacity up to 2.0TB.
 - All other SKUs can support only up to 1.0TB

- Mode supported:
 - 100% Memory Mode;
 - 100% App Direct interleaved mode, 100% App Direct non-interleaved mode
 - Mixing Memory Mode and App Direct interleaved/non-interleaved Mode with percentages. In this mode, volatile and persistent capacity will be aligned to 32GiB boundary
- Within a server, populate identical DIMMs and identical DCPMM for individual population That is, use only one Lenovo part number for DIMMs and one Lenovo part number for DCPMMs.
- All the DCPMMs in the system must be configured identically. Configuration include mode (memory mode, App Direct or mixed) and capacity in each mode.
- ► The matrix in Figure 3 represents all validated DCPMM configuration
 - A system that supports 2-2-2 (that is two memory slots per channel and 12 memory sockets per processor) can support all configurations listed below. Systems that support 2-2-2 are SR950, SR860, SR850, SR650, SR630, SN880 and SN550
 - A system that support 2-1-1 (i.e. 8 DIMM sockets per processor) can support only 2-1-1 configurations. Systems that support 2-1-1 configurations are SD650, SD530, SR590 and SR570.
 - Some systems (SD530, SR650, and SR630) limit CPUs that can be used with DCPMM due to the size of CPU heat sink.

	Symmetric Population within the Socket												
			iM	C1					iM	C0			
	Chan	nel 2	Chan	nel 1	Chan	nel 0	Channel 2		Channel 1		Chanr	nel O	
Modes	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	
AD	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	2-2-2
мм	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	2-2-2
AD + MM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	DCPMM	DIMM	2-2-2
AD	-	DIMM	-	DIMM	DCPMM	DIMM	-	DIMM	-	DIMM	DCPMM	DIMM	2-1-1
мм	-	DIMM	-	DIMM	DCPMM	DIMM	-	DIMM	-	DIMM	DCPMM	DIMM	2-1-1
AD + MM	-	DIMM	-	DIMM	DCPMM	DIMM	-	DIMM	-	DIMM	DCPMM	DIMM	2-1-1
AD	-	DIMM	DCPMM	DIMM	DCPMM	DIMM	-	DIMM	DCPMM	DIMM	DCPMM	DIMM	2-2-1
мм	-	DIMM	DCPMM	DIMM	DCPMM	DIMM	-	DIMM	DCPMM	DIMM	DCPMM	DIMM	2-2-1
AD + MM	-	DIMM	DCPMM	DIMM	DCPMM	DIMM	-	DIMM	DCPMM	DIMM	DCPMM	DIMM	2-2-1
AD	-	DCPMM	-	DIMM	-	DIMM	-	DCPMM	-	DIMM	-	DIMM	1-1-1
мм	-	DCPMM	-	DIMM	-	DIMM	-	DCPMM	-	DIMM	-	DIMM	1-1-1
AD + MM	-	DCPMM	-	DIMM	-	DIMM	-	DCPMM	-	DIMM	-	DIMM	1-1-1
AD	-	DCPMM	DIMM	DIMM	DIMM	DIMM	-	DCPMM	DIMM	DIMM	DIMM	DIMM	2-2-1
				A	mmetric Po			Cookot					
			:0.	ASY IC1	mmetric Po	opulation	within the	Socket		мсо			-
	Chan	nol 2		nel 1	Cha	nnel 0	Chr	annel 2		annel 1	Cha	nnel 0	-
Modes	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	Slot 1	Slot 0	-
	-	DIMM	5101 1	DIMM	5101 1	DIMM		DIMM	5101 1	DIMM	DCPMM		2/1 1 1
AD AD*	_	DIMM	_		-		-				DCPMM		2/1-1-1
				DIMM	-	DIMM	-	DIMM	-	DIMM	DCPIVIIVI	DIMM	2/1-1-1
	cket has n												

Figure 3 Lenovo supported DIMM/DCPMM population matrix

Managing DCPMMs in ThinkSystem servers

This section describes the ways that DCPMMs are managed using Lenovo ThinkSystem management tools.

Management tasks are as follows:

- "DCPMM inventory"
- "DCPMM configuration" on page 14
- "DCPMM firmware updates and monitoring" on page 16

DCPMM inventory

Lenovo ThinkSystem servers support DCPMM inventory through these management tools:

- "Lenovo XClarity Provisioning Manager (LXPM)"
- "Lenovo XClarity Controller (XCC)" on page 10
- "Lenovo XClarity Essentials (LXCE) OneCLI" on page 13
- "Lenovo XClarity Administrator (LXCA)" on page 14

Lenovo XClarity Provisioning Manager (LXPM)

Press F1 during system boot when prompted, then select **UEFI Setup** \rightarrow **System Settings** \rightarrow **Intel Optane DCPMMs** \rightarrow **Intel Optane DCPMMs** Details. DCPMM related inventory info is displayed. Figure 4 on page 10 shows an example.

XClarity Provisioning Manager	ThinkSystem SR630 -[7X01RCZ000]-		0	©	0	Ð	
🌔 Exit UEFI Setup	DIMM 6					÷	
System Information	Firmware Version	01.02.00.5355				Back	
System Settings	Configuration Status	Configured		v		8	
Date and Time	Raw Capacity	126.4 GB				Save	
Start Options	Memory Capacity	0 B				0	
Boot Manager	App Direct Capacity	64.0 GB				Discard	
BMC Settings	Unconfigured Capacity	0 B				۵	
System Event Logs	Inaccessible Capacity	62.4 GB				Default	
User Security	Reserved Capacity	0 B					
	Percentage Remaining	100					
	Security State	Disabled		Ŧ			

Figure 4 DCPMM Inventory in Lenovo XClarity Provisioning Manager

Lenovo XClarity Controller (XCC)

With the server powered (does not need to be booted), you can access the remote web management interface of XCC by opening a web browser to the XCC IP address. Click Inventory and select one DCPMM DIMMs, as shown in Figure 5.

DIMM: 12/48 Installe	d			0
ilot	Туре	Capacity	Part Number	
DIMM 1	Intel Optane DCPMM	128 GB	NMA1XBD128GQS	~
Description	DIMM1 FRU	FRU Part Number		
FRU Serial Number	000020AE	Manufacturer	Intel	
Туре	Intel Optane DCPMM	Manufacture Date	3518 (wk/yr)	
Max Speed	2666 MHz	Configured Memory Clock Speed	2666 MHz	
Ecc Bits	16	Module Supported Voltage	1.2V	
Raw Capacity	126.4 GB	Memory Capacity	62 GB	
App Direct Capacity	64 GB	Unconfigured Capacity	0 B	
Inaccessible Capacity	432.3 MB	Reserved Capacity	0 B	
Firmware Version	01.02.00.5360			

Figure 5 DCPMM Inventory via Lenovo XClarity Controller

DCPMM inventory is also supported thru the XCC Redfish interface with the standard Memory and SoftwareInventory schema. Details can be found in the XCC Redfish REST API Guide on the Lenovo support site:

https://sysmgt.lenovofiles.com/help/index.jsp?topic=%2Fcom.lenovo.systems.manageme
nt.xcc.doc%2Fprintable_doc.html&cp=2_0&anchor=printable_doc

Example 1 shows the DCPMM JSON properties returned from the Redfish API.

Example 1 Redfish JSON properties for DCPMMs

```
{
   "AllowedSpeedsMHz":
       2666
   ],
   "VolatileRegionSizeLimitMiB": 0,
   "MemoryDeviceType": "DDR4",
   "Id": "6",
    "MemorySubsystemControllerProductID": "0x8980",
    "Links": {
        "Chassis": {
            "@odata.id": "/redfish/v1/Chassis/1"
       }
   },
    "MemoryMedia":
       "DRAM"
   ],
   "PartNumber": "NMA1XBD128GQS",
   "DeviceID@Redfish.Deprecated": "The property is deprecated. Please use ModuleProductID instead.",
    "MemoryLocation": {
       "Channel": 0,
        "MemoryController": 0.
        "Slot": 6.
       "Socket": 1
   },
    "MemorySubsystemControllerManufacturerID": "0x097a",
   "MemoryType": "IntelOptane",
   "DeviceLocator": "DIMM 6",
   "CacheSizeMiB": null.
   "0em": {
        "Lenovo": {
            "@odata.type": "#LenovoMemory.v1 0 0.LenovoMemory",
```

```
"PN": "02JG167"
       }
    },
    "@odata.type": "#Memory.v1 7 0.Memory",
    "RankCount": 8,
    "SubsystemDeviceID@Redfish.Deprecated": "The property is deprecated. Please use
MemorySubsystemControllerProductID instead.",
    "DeviceID": "DIMM 6",
    "VendorID": "Intel",
    "Regions": [
        {
            "SizeMiB": 129024,
            "RegionId": "AppDirect",
            "MemoryClassification": "ByteAccessiblePersistent"
        },
        {
            "SizeMiB": 432.
            "RegionId": "Inaccessible",
            "MemoryClassification": "Block"
        }
    ],
    "ModuleProductID": "0x4151",
    "@odata.id": "/redfish/v1/Systems/1/Memory/6",
    "LogicalSizeMiB": 129024,
    "@odata.context": "/redfish/v1/$metadata#Memory.Memory",
    "DataWidthBits": 64,
    "@odata.etag": "\"828705dee0ff7bbe1c207b5c7f1ffb61\"",
    "SerialNumber": "00001510",
    "VendorID@Redfish.Deprecated": "The property is deprecated. Please use ModuleManufacturerID instead.",
    "SecurityCapabilities": {},
    "CapacityMiB": 131072,
    "Description": "This resource is used to represent a memory for a Redfish implementation.",
    "SubsystemVendorID@Redfish.Deprecated": "The property is deprecated. Please use
MemorySubsystemControllerManufacturerID instead.",
    "Location": {
        "PartLocation": {
            "LocationType": "Slot",
            "ServiceLabel": "DIMM 6",
            "LocationOrdinalValue": 5
        }
   },
    "SubsystemDeviceID": "0x097a",
    "NonVolatileSizeMiB": 129024,
    "Status": {
        "State": "Enabled",
        "Health": "OK"
    },
    "OperatingMemoryModes": [
        "Volatile"
    ],
    "BusWidthBits": 72,
    "ModuleManufacturerID": "0x8980",
    "Manufacturer": "Intel",
    "SubsystemVendorID": "0x8980",
    "OperatingSpeedMhz": 2666,
    "BaseModuleType": "LRDIMM",
    "Name": "DIMM 6",
    "PersistentRegionSizeLimitMiB": 129024,
    "VolatileSizeMiB": 131072,
    "FunctionClasses": [
```


Lenovo XClarity Essentials (LXCE) OneCLI

The OneCLI inventory command can be used to get DCPMM inventory information. The following command generates an HTML-formatted report you can view in a web browser:

OneCli.exe inventory getinfor --htmlreport

Click on the link **Persistent Memory** under Hardware on the left side to view detailed DCPMM inventory information, as shown in Figure 6.

Software	Persiste	nt Memor	v											
System Overview			,											
Hardware	Intel Optane													
Hardware Inventory	Total Capacity			502.9 GiB										
Persistent Memory	Memory Capa	city		244.0 GiB	244.0 GIB									
Firmware/VPD	AppDirect Cap	acity		256.0 GiB										
BMC Configuration	Unconfigured	0.0 GiB												
BMC Environmental	Inaccessible C	0.0 GiB												
Light Path	Reserved Cap	acity		2.9 GiB	2.9 GIB									
PCI Adapters														
Storage Devices	SPA Region													
FoD Key	ISetID Socket ID			Memory Type	y Type Capacity		Free Capacity		Health State		DIMM ID			
	0x292deeb83635244			AppDirect	128.0 GIB		128.0		Healthy		0x0020, 0			
BMC Logs	0xe902eeb8e333244	4 1		AppDirect	128.0 GiB		128.0	GIB	Healthy		0x1020, 0	x1120		
Chassis Event Logs														
IPMI Event Logs	Namespaces													
Analysis	Device	Mod	e	Size		Sector Size			Block Device		NUMA Node			
OneCli Error Log	namespace0.0	raw	raw		B (137.44 GB) 512 Byte B (137.44 GB) 512 Byte				pmem0 pmem1	0				
		1.00%				10.000								
Lenovo Service	Namespaces													
System Settings			Ith Status	Atomicity Ty	/De	Can Be	Removed	Physical Device ID		Unsafe Shutdown Co				
	2	50 GB	Heal		None		True		{1}		2			
	3	50 GB	Unhe	althy	None		True		{101}		8			
	4	50 GB	Heal	thy	None		True		{1001}		1			
	5	50 GB	Heal	thy	None		True		{1101}		6			
	DCPMM													
	Device Locator	Memory Type	Serial Number	Part Number	DIMM ID	Firmwar	e Version	Capacity	Memory Capacity	AppDirec	ct Capacity	Reserved Capacity		
	DIMM 1	Logical NonVolatile Device	0x000020ae	NMA1XBD128GQS	0x0020	01.02.00.5	5355	126.4 GiB	62.0 GIB	64.0 GIB		0.0 GIB		
	DIMM 12	Logical NonVolatile Device	0x00001c52	NMA1XBD128GQS	0x0120	01.02.00.5	5355	126.4 GiB	62.0 GIB	64.0 GIB		0.0 GIB		
	DIMM 13	Logical NonVolatile Device	0x000020c9	NMA1XED128GQS	0x1020	01.02.00.5	5355	126.4 GiB	62.0 GIB	64.0 GIB		0.0 GIB		
	DIMM 24	Logical NonVolatile Device	0x00001bba	NMA1XBD128GQS	0x1120	01.02.00.5	5355	126.4 GiB	62.0 GIB	64.0 GiB		0.0 GiB		
	DCPMM Raw Da													
	Command	ta			Description						Raw Data			
	ipmctl show -a -dimm					M information in d	ietail.				Dissal1. txt			
	ipmctl show -event				Show event i	nformation.					Event, txt			
	ipmcti show -a -sense	or			Show inform	ation of DCPMM's	sensor				Sensor, tat			
	ipmcti show -system									Syntem tat				

Figure 6 DCPMM information from the OneCLI inventory report

Lenovo XClarity Administrator (LXCA)

XClarity Administrator provides detailed DCPMM inventory info by clicking Inventory details. Figure 7 on page 14 shows an example of an installed 256GB DCPMM.

Power Supplie	es: (2) Installed			ų	Intel Optane Summary		
✓ Memory: (4) Ir	nstalled				Memory Direct Capacity	252 GB	
Bay Number	Size	Speed	Туре	1	Memory Inaccesible Capacity	448 MB	Manufacturer
5	256 GB	2666 MT/s	Intel Optane DC	ζ	Memory Capacity	0 MB	Intel
6	16 GB	2666 MT/s	DDR4	C	Firmware Name	AEP DIMM firmware	Micron Technology
7	16 GB	2666 MT/s	DDR4	C	Firmware Version	01.02.00.5318	Samsung
8	16 GB	2666 MT/s	DDR4	c	Firmware Status	Active	Samsung

Figure 7 DCPMM inventory in Lenovo XClarity Administrator

DCPMM configuration

Lenovo ThinkSystem servers support DCPMM configuration through these tools:

- "Lenovo XClarity Provisioning Manager (LXPM)"
- "Lenovo XClarity Essentials (LXCE) OneCLI" on page 15
- "Lenovo XClarity Administrator (LXCA)" on page 16

Lenovo XClarity Provisioning Manager (LXPM)

The setup page for DCPMMs in LXPM has the menu structure shown in Figure 8

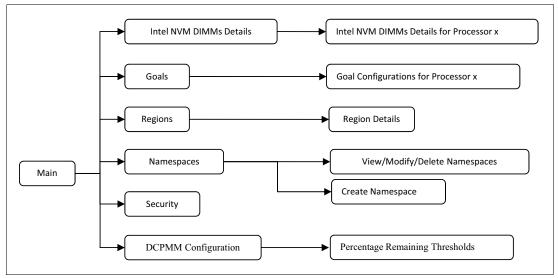


Figure 8 LXPM Setup Page Topography

When prompted during boot, press F1 to launch LXPM. Select **UEFI Setup** \rightarrow **System Settings** \rightarrow **Intel Optane DCPMMs**. You will then see the DCPMM related settings as shown in Figure 9 on page 15.

XClarity Provisioning Manager	ThinkSystem SR630 -[7X01RCZ000]-		0	ŝ	0	Ð
🕻 Exit UEFI Setup	Number of Intel Optane DCPMMs Detected	1				÷
System Information	Total Raw Capacity	126.4 GB				Back
System Settings	Total Memory Capacity	0.8				8
Date and Time	Total App Direct Capacity	64.0 GB				Save
Start Options	Total Unconfigured Capacity	0 B				\$
Boot Manager	Total Inaccessible Capacity	62.4 GB				Discard
BMC Settings	Total Reserved Capacity	0 B				1
System Event Logs	> Intel Optane DCPMMs Details					Default
User Security	> Goals					
	 > Regions > Namespaces 					
	> Security					
	> DCPMM Configuration					

Figure 9 LXPM DCPMM settings (ThinkSystem SR630)

Lenovo XClarity Essentials (LXCE) OneCLI

OneCLI 2.5.0 or later supports DCPMM. The show command displays all available settings for DCPMMs:

./OneCli config show IntelOptaneDCPMM --bmc USERID:password@bmc_ip

Example output of the show command is shown in Figure 10

Invoking SHOW command
Connected to BMC at IP address 10.240.194.229 by IPMI
IntelOptaneDCPMM.CreateGoal=No
IntelOptaneDCPMM.MemoryModePercentage=0
IntelOptaneDCPMM.PersistentMemoryType=App Direct
IntelOptaneDCPMM.TotalRawCapacity=505.6 GB
IntelOptaneDCPMM.TotalMemoryCapacity=248.0 GB
IntelOptaneDCPMM.TotalAppDirectCapacity=256.0 GB
IntelOptaneDCPMM.PercentageRemainingThresholds=10
IntelOptaneDCPMM.RegionID.1=0x0001
IntelOptaneDCPMM.RegionID.2=0x0002
IntelOptaneDCPMM.RegionSocket.l=Processor 1
IntelOptaneDCPMM.RegionSocket.2=Processor 2
IntelOptaneDCPMM.RegionCapacity.1=128.0 GB
IntelOptaneDCPMM.RegionCapacity.2=128.0 GB
IntelOptaneDCPMM.RegionType.l=App Direct
IntelOptaneDCPMM.RegionType.2=App Direct
IntelOptaneDCPMM.SecurityState= <mark>Disabled</mark>
IntelOptaneDCPMM.SecurityOperation=None
IntelOptaneDCPMM.DcpmmLocation.l=DIMM 1
IntelOptaneDCPMM.DcpmmLocation.2=DIMM 12
IntelOptaneDCPMM.DcpmmLocation.3=DIMM 13
IntelOptaneDCPMM.DcpmmLocation.4=DIMM 24
IntelOptaneDCPMM.DcpmmUid.1=8089-A2-1835-000020AE
IntelOptaneDCPMM.DcpmmUid.2=8089-A2-1835-00001C52
IntelOptaneDCPMM.DcpmmUid.3=8089-A2-1835-000020C9
IntelOptaneDCPMM.DcpmmUid.4=8089-A2-1835-00001BBA
IntelOptaneDCPMM.DcpmmSecurityState.l=Disabled
IntelOptaneDCPMM.DcpmmSecurityState.2=Disabled
IntelOptaneDCPMM.DcpmmSecurityState.3=Disabled
IntelOptaneDCPMM.DcpmmSecurityState.4=Disabled
IntelOptaneDCPMM.DcpmmAutoUnlockState.1=Not Applicable
IntelOptaneDCPMM.DcpmmAutoUnlockState.2=Not Applicable
IntelOptaneDCPMM.DcpmmAutoUnlockState.3=Not Applicable
IntelOptaneDCPMM.DcpmmAutoUnlockState.4=Not Applicable
Success.

Figure 10 OneCLI show command

Lenovo XClarity Administrator (LXCA)

Configure DCPMM in XClarity Administrator by clicking LXCA Provisioning \rightarrow Configuration Pattern. Figure 11 shows an example.

General Loca	Storage	I/O Adapters	Boot	Firmware Settin	ngs					
	ns : Intel O	otane DC Persis	tent Memory							×
Storage Option	s: Inf	el Optane DC Pe	ersistent Mem	ory 💌						
				-						
Persistent M Type:	mory	App Direct 👻								
Memory Mod										
Percentage (Percentage	%):									
Remaining Thresholds (
 The Intel Op Namespace. 	tane DC Per	sistent Memory of	onfiguration w	rill not take effect	if this pattern is	deployed to a	a server which	has enabled security	or created a	
- Add Config	uration									
📥 Add Config	iration									

Figure 11 DCPMM Configuration in LXCA

DCPMM firmware updates and monitoring

This section describes the Lenovo tools that provide ways to manage the DCPMM firmware.

- "Updating firmware using OneCLI" on page 17
- "Updating firmware using Lenovo XClarity Administrator" on page 18

Rules and recommendations about DCPMM firmware:

- Each DCPMM has on-DIMM firmware.
- All DCPMMs in the system must be at the same firmware level.
- DCPMM firmware should not be down-leveled unless as guided by Lenovo support personnel.
- Configure-to-order server builds with DCPMMs will be flashed to the latest firmware, however for field upgrades using option part numbers, you should update all installed DCPMMs to the latest firmware level. At the very least, all firmware levels must be the same.

Lenovo tools and update bundles support DCPMM firmware updates.

The firmware on DCPMMs can be updated in-band running on an installed OS (such as Windows Server, RHEL and SLES). Updates will work as either a standalone update or as part of an UpdateXpress Service Pack (UXSP).

The firmware can also be completed with Lenovo XClarity Essentials (LXCE) Bootable Media Creator (BoMC) created with a updated ISO, USB Key or PXE, as well as with Lenovo XClarity Administrator (LXCA), LXCE OneCLI, or LXCE UpdateXpress. Servers running VMware ESXi will require an out-of-band update.

DCPMM firmware updates for each support server are available from the Lenovo support site:

https://datacentersupport.lenovo.com

Updating firmware using OneCLI

OneCLI 2.5.0 or later will support DCPMM firmware acquisition, scan, version comparison, and update, using the following commands:

./OneCli update acquire --ostype platform --mt xxxx --dir /path/to/workingfolder/

./OneClI update scan --bmc bmcuser:bmcpassword@bmcip

./OneCliI update compare --bmc bmcuser:bmcpassword@bmcip --dir /path/to/workingfolder/

./OneCliI update flash --platform --bmc bmcuser:bmcpassword@bmcip --dir /path/to/workingfolder/ --sftp sftpuser:sftppassword@sftpip/path/to/workingfolder_with_rw_permission/

Figure 12 shows the result of a scan.

	Scan Result:		
No.	Updatable Unit	Slot	Installed Version
1	XCC Firmware	N/A	TEI341S-2.40
2	XCC Backup Firmware	N/A	TEI3415-2.40
3	UEFI Firmware/BIOS	N/A	IVE135S-2.10
4	LXPM Diagnostic Software	N/A	PDL119E-1.60
5	LXPM Windows Drivers	N/A	PDL310P-1.10
6	LXPM Linux Drivers	N/A	PDL215P-1.40
7	QLGC Fibre Channel Adapter LOSPP Software Bundle	N/A	1.90.53
8	EMLX Fibre Channel Adapter N000S Software Bundle(1)	N/A	11.4.329.13
9	EMLX Fibre Channel Adapter N000S Software Bundle(2)	N/A	11.4.329.13
10	MLNX Ethernet Adapter B000A Software Bundle	N/A	2.42.5032
11	MLNX Ethernet Adapter B000A UEFI	N/A	14.11.84
12	QLogic QML2692 Mezz 16Gb 2-Port Fibre Channel Adapter	1	1.90.53
13	Emulex LPm16004B-L Mezz 16Gb 4-Port Fibre Channel Adapter	2	11.4.329.13
14	Mellanox ConnectX-3 Mezz FDR 2-Port InfiniBand Adapter (Mellanox Base Firmware)	4	2.42.5032
15	Mellanox ConnectX-3 Mezz FDR 2-Port InfiniBand Adapter (Mellanox uEFI driver)	4	14.11.47
16	Intel X722 LOM (Etrack ID)	onboard	8000115E
17	Intel X722 LOM (Combined Option ROM Image)	onboard	1.1892.0
18	Intel Optane DCPMM1	1	01.02.00.5360
19	Intel Optane DCPMM12	12	01.02.00.5360
20	Intel Optane DCPMM13	13	01.02.00.5360
21	Intel Optane DCPMM24	24	01.02.00.5360

Figure 12 OneCLI firmware scan results

Updating firmware using Lenovo XClarity Administrator

DCPMM firmware can be updated in LXCA as shown in Figure 13.

· · ·	ect a target ver	sion for each component,	and click Perfo	orm Updates.		
Update with Policy Update without	t Policy					
🔁 🖻 🗐 🖬 I Al	Actions -				Filter By	Show
Device	Groups	Chassis / Bay	• Pow	er Installed Version	Downloaded Later Versions	Firmware Target
UEFI (Primary)				2.10 / TEE135S	No later versions	
LXPM Diagnostic Software				1.50 / PDL117P	No later versions +	
LXPM Linux Drivers				1.00 / PDL209F	No later versions	
LXPM Windows Drivers				1.00 / PDL309F	No later versions +	
Intel X722 LOM				1.1638.0 / 80000B0D / 0	No later versions -	
Intel Optane DCPMM-4	Intel Optar	ne DCPMM-4		01.02.00.5355 / 0	No later versions +	
Disk Drive Update Program				Firmware Not Detected	No later versions -	

Figure 13 DCPMM firmware update In LXCA

Operating system support

The following operating systems support Intel DCPMMs.

Microsoft Windows Server

Windows Server 2019 supports Intel DCPMM in both Memory Mode and App Direct mode. For details, refer to:

https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/deploy-p
mem

VMware vSphere / ESXi

VMware vSphere supports Intel DCPMM as follows:

- App Direct Mode: with vSphere 6.7EP05 (ESXi670-201811001) or newer. This is fully supported to be deployed in production environments, without restrictions.
- Memory Mode: with vSphere 6.7EP13 (ESXi650-201903001). VMware will support Memory mode production deployment for limited use-cases. Such deployment requires explicit approval from VMware for support.

For details and more information, refer to:

https://vspherecentral.vmware.com/t/hardware-acceleration/persistent-memory-pme
m/announcing-vmware-vsphere-support-for-intel-r-optane-tm-dc-persistent-memorytechnology/

For information about Lenovo's specific certification and support for Intel DCPMM on VMware, refer to:

https://kb.vmware.com/s/article/68023

Red Hat Enterprise Linux (RHEL)

RHEL 7.6 and RHEL 8.0 support Intel DCPMM in both Memory Mode and App Direct mode. For App Direct mode, the support is as follows:

- Block Mode is fully supported in RHEL 7.3 and later
- Device DAX is fully supported in RHEL 7.4 and later

 File System DAX for ext4 and XFS is "Technology Preview" in RHEL 7.6 and RHEL 8.0 (see RHEL 7.6 Release Notes for more details) and is targeted for full support in a future minor release of Red Hat Enterprise Linux 7.

For more information, refer to:

https://access.redhat.com/articles/3830541

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/s
torage administration guide/ch-persistent-memory-nvdimms

SUSE Linux Enterprise Server (SLES)

SLES 12 SP4 and SLES 15 supports Intel DCPMM in both Memory Mode and App Direct mode.

For more details and information on SLES support for Intel DCPMM with SAP HANA workloads, refer to:

https://www.suse.com/c/news/suse-partners-with-intel-and-sap-to-accelerate-it-t
ransformation-with-persistent-memory-in-the-data-center/

Management in operating systems

In addition to Lenovo tools, users can manage Intel DCPMM in operating systems using the tools provided in the operating systems:

- "ipmctl"
- "ndctl" on page 20
- "Windows PowerShell commands" on page 20
- "VMware vSphere management" on page 21

ipmctl

This is an open source tool that can be used under Windows or Linux to configure and manage Intel DCPMM devices. The tool source code is available from:

https://github.com/intel/ipmctl

The tool supports the following functionality:

- Discover DCPMMs on the platform
- Provision the platform memory configuration
- View and update DCPMM firmware
- Configure data-at-rest security
- Monitor PMM health
- Track DCPMM performance
- Debug and troubleshoot DCPMMs

Examples of using ipmctl:

Show the DCPMM inventory and health status overview, Figure 14

ipmctl show -dimm

PS C:∖Use	rs\Administr	ator> ipmctl s	how -dimm		
DimmID	Capacity	HealthState	ActionRequired	LockState	FWVersion
	502.5 GiB 502.5 GiB				01.02.00.5355 01.02.00.5355

Figure 14 Output of the ipmctl show -dimm command

Show detailed DCPMM health information, Figure 15

ipmctl show -sensor

PS C:\Users\Administrator> ipmctl show -sensor							
DimmID	Туре	CurrentValue	CurrentState				
0x0001 0x0001 0x0001 0x0001	Health MediaTemperature ControllerTemperature	Healthy 43C 45C	Normal Normal Normal				
0x0001	PercentageRemaining	100%	Normal				
0x0001	LatchedDirtyShutdownCount	32	Normal				
0x0001	PowerOnTime	2971015s	Normal				
0x0001	UpTime	1393s	Normal				
0x0001	PowerCycles	321	Normal				
0x0001	FwErrorCount	8	Normal				
0x0001	UnlatchedDirtyShutdownCount	88	Normal				
0x00011 0x0011 0x0011 0x0011	Health MediaTemperature ControllerTemperature	Healthy 45C 45C	Normal Normal Normal				
0x0011	PercentageRemaining	100%	Normal				
0x0011	LatchedDirtyShutdownCount	6	Normal				
0x0011	PowerOnTime	2404897s	Normal				
0x0011	UpTime	1393s	Normal				
0x0011	PowerCycles	199	Normal				
0x0011	FwErrorCount	8	Normal				
0x0011	UnlatchedDirtyShutdownCount	44	Normal				

Figure 15 Output of the ipmctl show -sensor command

For more information on using ipmctl, refer to:

Lenovo documentation of the tool at:

https://datacentersupport.lenovo.com/us/en/products/servers/thinksystem/sr850/s
olutions/HT508252

Lenovo video showing usage of the tool:

https://youtu.be/pzSsdcfL-vg
https://v.youku.com/v_show/id_XNDE3MTYxMDk5Ng

ndctl

Linux users can also use the ndctl tool to manage Intel DCPMM.

For more information, refer to the tool user guide

https://docs.pmem.io/ndctl-users-guide

Windows PowerShell commands

Windows Server 2019 offers native commands for managing Intel DCPMMs:

Get-PmemDisk Get-PmemPhysicalDevice Get-PmemUnusedRegion New-PmemDisk For details on these commands, and how they can be used to manage Intel DCPMM devices, refer to the following document:

https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/deploy-pmem

You can also review the Lenovo Press paper, *Implementing Intel Optane DC Persistent Memory on Windows Server 2019*, available from:

https://lenovopress.com/lp1192-implementing-intel-optane-dcpmm-on-ws-2019

Lenovo offers a sample PowerShell script (pmemtool) that uses these native commands to manage DCPMM. The script open source is available from github:

https://github.com/lenovo/powershell-pmemtool

VMware vSphere management

You can manage Intel DCPMM devices under VMware vSphere using the following:

- Virtual Persistent Memory (vPMem)
- Virtual Persistent Memory Disk (vPMemDisk)

For details, refer to VMware vSphere documentation:

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-EB72D358-9C2C-4FBD-81A9-A145E155CE31.html

Health management

Lenovo ThinkSystem servers monitor the health of DCPMMs and will send an alert to the administrator when user attention is needed.

The server monitors the available capacity of DCPMM storage media. When the available capacity approaches a user-settable threshold, or reaches zero, the system will send an alert. The alert will be forwarded to all XCC customer-visible logs and surfaced via industry standard alerting schemes supported by Lenovo XCC.

Additionally, the DCPMM media controller does internal wear-leveling and abstracts this information with SMART data reporting of the remaining spare capacity.

DCPMMs also has internal scrub engine and supporting ECC algorithm to recover correctable errors. DCPMMs also support similar Single Device Data Correction (SDDC) and Double Device Data Correction (DDDC) feature as DDR DIMM; the DCPMM media controller will handle the correctable error directly, so only uncorrectable errors will be triggered to interrupt or error pin and let SMI handler or BMC to handle.

Another RAS feature called *Address Range Scrub* (ARS), allows UEFI or the operating system to scrub the media to proactively catch errors.

ThinkSystem UEFI will always start ARS on boot under the following conditions:

- When the OS (for example, Linux or ESXi) first comes with Query ARS Status, the BIOS will abort the ARS behind the scenes and report partial results via Query ARS Status with Ended Prematurely extended status and the Overflow bit set.
- When the OS (such as Windows) first comes with Start ARS, the BIOS will abort the ARS behind the scenes and service the Start ARS DSM as normal.

Lenovo LXPM supports DCPMM diagnostics, which can do DCPMM-related tests and also provides the test result. For details, see the LXPM User Guide. From within LXPM, select **Diagnostics** \rightarrow **Run Diagnostic**, then click **DCPMM test**.

Clarity Provisioning Manager					⊕	0	E
🗐 Dashboard	DCPMM Test						
📷 Memory Test	DCPMM Test Opt	ion					
him in the second se	Q uick diagnostics						
	🗹 Config diagnostics	i i i i i i i i i i i i i i i i i i i					
Disk Drive Test	✓ FW diagnostics						
	Security diagnosti	cs					
	DCPMM Test Stat	US					
🔊 DCPMM Test	Device Name	Status	Progress	Duration			
w series	Select All						
R	DIMM 6	[Not Run]	0%	0 seconds			
	DIMM 4	[Not Run]	0%	0 seconds			
DIMM 3 status: configuration error Device disabled							

Figure 16 shows the DCPMM diagnostics page in LXPM.

Figure 16 DCPMM diagnostic page in LXPM

Moving DCPMMs to a new system board

In instances when a system planar replacement is required, special consideration is necessary to ensure the persistent data contained in DCPMMs are not lost during migration:

- If DCPMMs are configured with interleaved App Direct Mode or Mixed Mode
 - All DCPMMs must install in the same position relative to the CPUs, memory controllers, and memory channels to avoid errors when moving DIMMs from one system to another
 - Lenovo ThinkSystem UEFI has a unique feature to support DCPMM migration for this case. Lenovo UEFI will verify and prompt user to change the DCPMM location if the new location is different from the previous one
- ► If DCPMMs are configured for Memory Mode or App Direct, not interleaved mode:
 - All DIMMs can be installed in any order in the new system by following the population rule.

Lenovo ThinkSystem UEFI has a unique DCPMM migration-events reporting feature. It will report three events for migration failure cases:

Mistaken migration to a different platform type.

If user migrated one group of DCPMMs from one type of system to a different system type. Event FQXSFMA0037G will be reported as shown in Figure 17:

		Type: 🚫 🛕 🚺	All Event Sources - Al	II Dates 👻	v.	۹
Common ID	11	Message		11	Date	11
FQXSFMA0037G			t (DIMM 4) is migrated from another system (machine type: 0x44), th et (DIMM 4) is migrated from another system (machine type: 0x44), th			

Figure 17 DCPMM FQXSFMA0037G event

• Migrating DCPMMs with wrong locations.

If the user migrated one group of DCPMMs from one system to another, but some of them were populated in the wrong sequence, event FQXSFMA0033M will report how many DCPMM locations are incorrect, and then several events FQXSFMA0034M will report the wrong DCPMM location with recommendation for how to correct them, one by one. See Figure 18 for one example:

		Type: 👩 🗼 🔲 All Source 🗸 All Dates 🗸	٩	
11	Common ID 1	Message 11	Date	11
	FQXSFMA0034M	DIMM 2 (UID: 8980A218340000106B) of Intel Optane DCPMM persistent memory interleave set should be moved to DIMM 2 (UID: 8880A218340000106B) of Intel Optane DCPMM persistent memory interleave set should be moved to DIMM		
	FQXSFMA0033M	Intel Optane DCPMM persistent memory interleave set has 2 DCPMMs(DIMM 2/4), 1 DIMMs' location is not correct.	April 23, 2019 12:42:10 AM	

Figure 18 DCPMM FQXSFMA0033M and FQXSFMA0034M events

Migration with missing DCPMMs.

If a user migrated one group of DCPMMs from one system to another system but some of them were missed, event FQXSFMA0035M will report how many DCPMMs are missing, and several events FQXSFMA0036M will report the missing DCPMMs one by one. See Figure 19 for an example:

		Type: 😢 🛕 🚺 All Source 🗸 All Dates 🗸		٩
11	Common ID 11	Message	11	Date
	FQXSFMA0036M	DIMM 4 (UID: 8980A2183400001258) of Intel Optane DCPMM persistent memory interleave set is missing.		April 23, 2019 12:32:10 A
	FQXSFMA0035M	Intel Optane DCPMM interleave set should have 2 DCPMMs, but 1 DCPMMs are missing.		April 23, 2019 12:32:07 #

Figure 19 DCPMM FQXSFMA0035M and FQXSFMA0036M events

Important note: Because the user does not know the original configuration of DCPMM, it is very important to ensure that the DCPMM location is maintained when the planar is changed

Security

The data in DCPMM is always encrypted with AES-256 encryption. The mode applied to the DCPMM determines how the encryption key is maintained.

 In Memory Mode: Encryption key for Volatile Region – provides equivalent security to DDR DIMMs. The encryption key is regenerated after each power cycle. In App Direct Mode: The user is able to set a 32-byte user-owned passphrase for user authentication to unlock the Persistent Region.

Lenovo ThinkSystem UEFI provides a unique DCPMM *Auto-unlock* feature. This is unique feature that is not available in the standard Intel implementation. The user can enable security for each DCPMM with a different passphrase, but the most common case is to enable DCPMM security at the platform (server) level—all DCPMMs in the server will share one passphrase.

If the user sets DCPMM security at the server level successfully, through either LXPM or OneCLI, then before booting to the OS (via either Legacy or UEFI), ThinkSystem UEFI will unlock the DCPMMs automatically. If auto-unlock fails, the detailed event info will be reported to the XCC event viewer. The user can also use the OneCLI command to get auto-unlock status.

Enabling security using LXPM

When a system boots, press F1 when prompted to boot to LXPM and select **UEFI Setup** \rightarrow **System Settings** \rightarrow **Intel Optane DCPMMs** \rightarrow **Security**. Highlight **Press to Enable Security** and press Enter for one DCPMM. As shown in Figure 20, you can set a password for DCPMM.

AClarity ioning Manag	ger ThinkSystem SR630 -[7X01RCZ000]-	\oplus	\$	0
UEFI Setup	Security Configuration:			
stem Information	Scope Platform		<i>v</i>	
stem Settings	The security state of all the Intel Optane DCPMMs is "Disabled".			
te and Time	> Press to Enable Security			
art Options	Enter Password			
ot Manager				
IC Settings	Create New Password			
stem Event Log	Confirm New Password			
er Security				
	Ok Cano	cel		

Figure 20 Enable DCPMM security in LXPM

Using the OneCLI command to get auto-unlock status

OneCLI can be used to get auto-unlock status. The command is as follows: ./OneCli config show IntelOptaneDCPMM --bmc USERID:password@bmc ip

Sample output of the command is shown below:

IntelOptaneDCPMM.DcpmmSecurityState.1=Unlocked IntelOptaneDCPMM.DcpmmSecurityState.2=Unlocked IntelOptaneDCPMM.DcpmmAutoUnlockState.1=Success IntelOptaneDCPMM.DcpmmAutoUnlockState.2=Success

Note: If a user set a passphrase, but lost it, please contact Lenovo for assistance.

UEFI Event IDs and Messages

Table 2 lists the Event IDs and messages relevant to DCPMMs.

For more detailed information and user actions about these Event IDs and messages, see the Messages Reference for your server in the Lenovo ThinkSystem Information Center:

https://thinksystem.lenovofiles.com/help/index.jsp

Event ID	Message String	Severity
FQXSFMA0030K	Intel Optane DCPMM DIMM [arg1] Percentage Remaining is less than [arg2]% and still functioning.	Warning
FQXSFMA0031K	Intel Optane DCPMM DIMM [arg1] has reached 1% remaining spares block and still functioning.	Warning
FQXSFMA0032M	Intel Optane DCPMM DIMM [arg1] has no remaining spares block.	Error
FQXSFMA0033M	Intel Optane DCPMM persistent memory interleave set has [arg1] DCPMMs (DIMM [arg2]), [arg3] DIMMs' location is not correct.	Error
FQXSFMA0034M	DIMM [arg1] (UID: [arg2]) of Intel Optane DCPMM persistent memory interleave set should be moved to DIMM slot [arg3] in sequence.	Error
FQXSFMA0035M	Intel Optane DCPMM interleave set should have [arg1] DCPMMs, but [arg2] DCPMMs are missing.	Error
FQXSFMA0036M	DIMM [arg1] (UID: [arg2]) of Intel Optane DCPMM persistent memory interleave set is missing.	Error
FQXSFMA0037G	Intel Optane DCPMM interleave set (DIMM [arg1]) is migrated from another system (Platform ID: [arg2]), these migrated DCPMMs are not supported nor warranted in this system.	Error
FQXSFMA0038K	All onboard Intel Optane DCPMMs could not be auto-unlocked because of no passphrase.	Warning
FQXSFMA0039K	One or more onboard Intel Optane DCPMMs could not be auto-unlocked because of invalid passphrase.	Warning
FQXSFMA0040K	Invalid Intel Optane DCPMM configuration detected. Please verify DCPMM configuration is valid.	Error
FQXSFMA0041K	Near Memory/Far Memory ratio (1:[arg1].[arg2]) for Intel Optane DCPMM configuration is not in recommended range (1:4 - 1:16).	Error
FQXSFMA0042K	Intel Optane DCPMM is not supported by processor of this system.	Error

Table 2 UEFI Error / Warning / Information Event IDs and Messages

Further reading

For more information please consult these resources:

- Persistent Intel Optane DC Memory Product Guide
 - https://lenovopress.com/lp1066-intel-optane-dc-persistent-memory

Authors

This paper was produced by the following team of specialists:

Sumanta Bahali is principal engineer for the memory subsystem at Lenovo Data Center Group. Sumanta leads the architecture and enablement of both standard and persistent memory for all Lenovo servers.

Paul Klustaitis is a Senior level product engineer at Lenovo DataCenter Group where he provides technical leadership to product managers, engineers, marketing and other teams on issues of cost, usability, quality, performance, reliability, serviceability, intended lifespan and user features for DataCenter products.

Jason Liu is a Senior UEFI Architect at Lenovo where he provides high-level infrastructure design support for Lenovo ThinkSystem UEFI firmware and leads the enabling, customization and innovation of new technologies into UEFI firmware. Jason also leads Reliability, Availability and Serviceability (RAS) architecture design for ThinkSystem, both UEFI firmware and BMC firmware.

Sumeet Kochar is a Distinguished Engineer and Chief Firmware Architect in Lenovo Data Center Group. Sumeet has been a key technical member and leader in the area of x86 server designs over the last 22 years. During his career, he has expertise in systems management, memory technology enablement, Reliability, Availability and Serviceability. He is a master inventor and holds multiple patents in these technology areas.

Samer EI-Haj-Mahmoud is a Principal Engineer and lead architect at Lenovo Data Center Group, responsible for Operating Systems and Solutions enablement. He has 20 years of experience in server development, in the areas of firmware, system software, security, and hardware management. Samer is also an active participant, author, and contributor to industry standards, including the DMTF Redfish Forum, and the UEFI Forum.

Thanks to the following people for their contributions to this project:

- Mark Chapman
- Michael Du
- Alicia Jackson
- Jack Lai
- Benjamin Ming Lei
- Aaron Tang
- Mark Tirpack
- David Watts

Notices

Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your local Lenovo representative for information on the products and services currently available in your area. Any reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any other product, program, or service.

Lenovo may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc. 1009 Think Place - Building One Morrisville, NC 27560 U.S.A. Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. Lenovo may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

The products described in this document are not intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information contained in this document was obtained in specific environments and is presented as an illustration. The result obtained in other operating environments may vary.

Lenovo may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this Lenovo product, and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled environment. Therefore, the result obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

This document was created or updated on August 22, 2019.

Send us your comments via the **Rate & Provide Feedback** form found at http://lenovopress.com/lp1167

Trademarks

Lenovo, the Lenovo logo, and For Those Who Do are trademarks or registered trademarks of Lenovo in the United States, other countries, or both. These and other Lenovo trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by Lenovo at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of Lenovo trademarks is available on the Web at http://www.lenovo.com/legal/copytrade.html.

System x® vNIC™

The following terms are trademarks of Lenovo in the United States, other countries, or both:

Flex System™	ServeRAID™
Lenovo®	ServerGuide™
Lenovo(logo)®	ServerProven®

The following terms are trademarks of other companies:

Intel, Intel Xeon, Intel Iogo, Intel Inside Iogo, and Intel Centrino Iogo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.