

Front cover

Introducing the Programming
Model of Intel Optane DC
Persistent Memory

Describes how the properties of
persistent memory differ from
conventional storage devices

Introduces the programming model
for persistent memory

Explains the challenges that face
software developers based on the
new programming model

Provides a basic coverage of the
supporting libraries for persistent
memory

Peng Liu

https://lenovopress.com/updatecheck/LP1194/df9326604b7dff719d28e9aa521232f6

2 Introducing the Programming Model of Intel Optane DC Persistent Memory

Abstract

The paper introduces the programming model for Intel Optane DC Persistent Memory. The
paper describes the challenges to application programming to best take advantage of the
benefits of persistent memory, and provides an overview of the supporting libraries to ease
the development work.

The target audience for this paper is developers who are considering using persistent
memory in their applications. It is also valuable for people who are involved in related
activities and want an overview of this new technology.

At Lenovo® Press, we bring together experts to produce technical publications around topics
of importance to you, providing information and best practices for using Lenovo products and
solutions to solve IT challenges.

See a list of our most recent publications at the Lenovo Press web site:

http://lenovopress.com

Contents

Introduction . 3
Programming Model . 3
Programming challenges . 5
Persistent Memory Development Kit . 7
Usage scenarios . 9
Author. 9
Notices . 10
Trademarks . 11

Do you have the latest version? We update our papers from time to time, so check
whether you have the latest version of this document by clicking the Check for Updates
button on the front page of the PDF. Pressing this button will take you to a web page that
will tell you if you are reading the latest version of the document and give you a link to the
latest if needed. While you’re there, you can also sign up to get notified via email whenever
we make an update.

http://lenovopress.com

Introduction

Intel Optane DC Persistent Memory (DCPMM or PMEM) is a new generation of nonvolatile
memory (NVM) technology that is fast enough for processors to access stored data directly,
without high latency and without a tremendous reduction in performance. Like flash memory,
PMEM is nonvolatile storage; yet, like Dynamic Random Access Memory (DRAM) it is also
byte-addressable using regular memory instructions.

This change in architecture blurs the line between traditional storage devices and DRAM.
Since it can be used as either, PMEM offers great flexibility, however, it also creates a
challenge for software developers.

Three key challenges faced by software developers are the following

� First, existing operating systems are designed for a strict bifurcation of devices into
memory (fast, random-access, volatile structures erased on reboot), and storage
(persistent, slow, block-based devices). Neither of these approaches exposes the full
power of PMEM to programmers.

To take full advantage of PMEM, a new programming model1 is introduced as the
standard method, which requires a disruptive change to the way programs are written.

� Second, PMEM does not typically replace either memory or storage. Instead, it is a third
tier used in conjunction with memory and storage. Program design needs to take the
storage level changes into consideration.

� Third, there are still many programming issues unique to PMEM to be addressed, which is
by no means a trivial task. Supporting libraries have been developed (and are continued to
be developed) for various PMEM use scenarios, as we discuss in this paper.

Programming Model

Like DRAM and storage, PMEM needs to manage space allocation so it can be shared by
different applications. Unlike volatile memory, the application needs to name regions that are
allocated so the application can find them after a restart. In addition, regions of PMEM need
permissions to control which applications have access to their contents. Rather than reinvent
the wheel, the PMEM programming model uses standard file semantics to provide naming
and permissions.

To access a storage device, an application has several choices: the standard way, direct I/O,
or memory-mapped I/O, as shown in Figure 1 on page 4. DMA operations are inevitable for
data transfer using all methods except for Direct Access (DAX).

Devices like hard drives and SSDs cannot be read/written like memory. For them, it is
necessary to set up a Direct Memory Access (DMA) transfer, and the transfer itself is
nontrivial. Data is usually cached by kernel in page caches.

1 Andy Rudoff. Programming models for emerging non-volatile memory technologies. USENIX ;login:, 38(3), June
2013.
© Copyright Lenovo 2019. All rights reserved. 3

Figure 1 Comparison of device accessing methods

Because PMEM is directly accessible and fast, with throughput similar to DRAM, it cannot
benefit from page caches as much as mechanical hard drives. Moreover, the usual I/O stack
of block devices is not efficient enough.

We need a new way to expose PMEM directly to the user without any intervening layers. This
is done by file memory-mapping plus DAX, which is a file system feature that enables
applications to access PMEM directly, without using the system page cache as it would for
normal, storage-based files.

Figure 2 shows the PMEM model which describes how applications interact with file system
and PMEM to complete read/write operations.

Figure 2 PMEM programming model

Since PMEM is memory-mapped, accesses to PMEM is completed merely by memory
read/write; and because the underlying file system supports DAX, those accesses are the
same as memory access in that they go directly to the PMEM device.

Using Linux as an example, the typical process of the model would be:

1. Build a file system supporting DAX on PMEM devices and mount it with DAX enabled

2. Create a file in the file system for the application's use

3. The application opens the file and memory-maps it into its address space

User
Spaces

Kernel
Space

App

Buffer

Page Cache

read/write

memory copy

DMA

(a) Normal IO

App

Buffer

read/write

Storage Device

DMA

(b) Direct IO

App

Page Cache

read/write

DMA

(c) Mmap IO

App

Persistent Memory

read/write

(d) DAX

Application

PM-Aware
File System

Persistent Memory

libraries

MMU

Mapping

User
Space

Kernel
Space
4 Introducing the Programming Model of Intel Optane DC Persistent Memory

4. The application reads and writes the memory-mapped area to access the PMEM

Programming challenges

The PMEM programming model is only half of the story. It handles the direct accessibility of
PMEM by setting up the data access path, but there are more complications when using
non-volatility of PMEM.

Making changes durable

With volatile memory, squeezing the last drop of performance is the main concern, and hence
caches and buffers are used all along the way from processors to memory. Since PMEM is
also connected to processors, the caches and buffers are applied to it as well. To avoid data
loss caused by power failure or system crash, the data must be flushed back to durable
media frequently and quickly.

For memory-mapped synchronization, the standard API is msync, which flushes pages from a
page cache. However, since PMEM doesn’t use page cache, an application only needs to
flush the CPU caches associated with the persistent domain (PD), a term used to describe
that portion of a platform’s data path where stores are safe from power-failures.

Figure 3 shows the data path taken by a store (MOV) to PMEM. The larger dashed box in the
figure represents the PD on a platform that is able to flush the write pending queue (WPQ)
automatically on power-fail.

Figure 3 Persistent domain

The platform-level feature that performs this flushing is called Asynchronous DRAM Refresh
(ADR). On machines without ADR, PD is the smaller dashed box in the figure. PMEM is
usually mapped with cache enabled for better performance. Thus the store typically ends up
in the CPU caches. Cache flush instructions can move stores out of the CPU caches, but the
data may be left in the WPQ. The data is still at risk of being lost on machines not capable of
ADR. Therefore, PCOMMMIT was added to the x86 instruction set to ensure that stores
reach the PMEM DIMM.

PCOMMMIT is no longer needed, because all current platforms support PMEM and ADR.
Therefore, cache flushing instructions alone are enough to ensure stores reach the PD.
Instead, two new optimized cache flushing instructions, Cache Line Write Back (CLWB) and
CLFLUSHOPT (Optimized CLFLUSH) [2], have been introduced to provide a
high-performance cache flushing method on ADR-capable platforms.

CPU

Caches

WPQ
Memory
subsystem

NVDIMM DIMM

store

cache flush

WPQ flush/ADR
 5

Figure 4 shows an example of an instruction sequence for storing values (10 and 20) to
PMEM with ADR supported.

Figure 4 CPU cache flushing

Making changes atomic

With multi-threaded applications, any data structure in memory accessed by one thread is at
risk of change by another thread. This results in a partially complete update being returned to
the former thread. In this context, it is said that atomicity is broken.

Broken atomicity is commonly solved by lock functions that can make ongoing changes
invisible to other threads. It is more difficult to keep atomicity with PMEM, because a store
may be interrupted by something like a power failure. For volatile memory, the memory state
after reboot does not matter much because it itself is volatile. But the contents of PMEM are
left in an inconsistent state and must be repaired by software.

On Intel processors, only an eight-byte store, aligned on an eight-byte boundary, is
guaranteed to be failure-atomic. That means if the store is interrupted by a power failure, the
memory contents will contain the previous eight bytes, or the new eight bytes, but not some
combination of the old and new data. Anything larger than eight bytes can be torn by power
failure and must be handled by software.

For example, if you want to update two eight-byte pointers in your program, and you want it to
happen atomically, protecting those pointers with a lock will only help you prevent other
running threads from seeing the partial update. A power failure might leave the update
partially undone, and there is no single instruction that will solve this issue. The software must
arrange for the update to be transactional, by building on the eight-byte power-fail-atomic
store provided by hardware.

Persistent Memory allocation

Another persistent memory challenge is more basic: managing the space. Since persistent
memory regions are exposed as files, the file system primarily manages that space. But once
the file is memory-mapped by an application, what happens within that file is completely up to
the application.

Functions such as C’s malloc() assume memory is volatile. Therefore, on program start-up it
offers no way to reconnect with a persistent heap and takes no steps to ensure the heap is
consistent in the face of failure. This makes space allocation a requirement for persistent
memory programming.

MOV X1, 10

MOV X2, 20

}
Store 10 to X1, 20 to X2

...

MOV R1, X1

}
Stores to X1 and X2 are globally

visible, but still potentially volatile

...

CLWB X1

CLWB X2

}
X1 and X2 flushed from caches

...

SFENCE
}

Ensures stores are ordered

ahead of any following code
6 Introducing the Programming Model of Intel Optane DC Persistent Memory

Making data position-independent

The need for location independence is another challenge. Although it is technically possible
to require that a range of persistent memory is always mapped at exactly the same address in
a program, it can become impractical when the sizes of other mapped items change.

A security feature known as Address Space Layout Randomization (ASLR) additionally
causes operating systems to randomly adjust where libraries and files are mapped. Location
independence means that when one data structure in persistent memory refers to another
using a pointer, that pointer must somehow be usable even when the file is mapped to a
different address. There are several ways to achieve this, such as relocating pointers after
mapping, using relative pointers instead of absolute pointers, or by using some type of
Object ID (OID) to refer to PM-resident data structures.

Persistent Memory Development Kit

The Persistent Memory Development Kit (PMDK) is designed to solve the challenges
described in the preceding section. It lives in user space as shown in Figure 2 on page 4, and
comprises a growing collection of libraries and tools tuned and validated on both Linux and
Windows. Most of these libraries are developed for specific use cases, and therefore can be
used by applications as necessary.

The libraries build on the DAX feature and work with any PMEM that provides the PMEM
programming model in Figure 2 on page 4. They are all open source, BSD-licensed, and
developed on GitHub in the following PMDK project:

https://github.com/pmem/pmdk

The libraries are written in C, making them potentially adaptable for various languages. They
are described in the subsections below.

For more information about PMDK, see the Persistent Memory Programming web site:

https://pmem.io

libpmem: Basic persistence support

The libpmem library is small and fairly simple. It targets the issue described in “Making
changes durable” on page 5. It provides low-level PMEM support including detecting which
types of flush instructions are supported by the CPU, The library also provides
performance-tuned routines for copying ranges of persistence memory using the best
instruction choices for the platform.

Most PMDK libraries depend on libpmem. Developers wishing to create their own persistent
memory algorithms will find this library useful. However, most developers will likely use a
higher-level PMDK library and let that library call libpmem for them. An example of PMEM
support for memcached using libpmem directly is available on GitHub at the following page:

https://github.com/lenovo/memcached-pmem
 7

https://github.com/pmem/pmdk
https://pmem.io
https://github.com/lenovo/memcached-pmem

libpmemobj: General-purpose allocations and transactions support

If your application has no special memory usage concerns and it needs more support than
libpmem gives, then libpmemobj is probably the library you want. Because it is for general
purposes and provides tools for solving the issues described in these sections:

� “Making changes atomic” on page 6
� “Persistent Memory allocation” on page 6
� “Making data position-independent” on page 7

The libpmemobj library provides a transactional object store, providing memory allocation,
transactions, and general facilities for persistent memory programming.

The libpmemobj library allows persistent memory objects to be allocated in a way that is
power-fail safe, allows referring to them by Object IDs (OIDs) which are location-independent,
and allows making an arbitrary number of changes atomic by encompassing the changes in a
transaction. The library is multithread-safe and optimized for multithread scalability (by doing
things like maintaining per-thread allocation caches).

Libraries for specific use cases

Besides libpmem and libpmemobj, there are various libraries with target-specific use cases.

� libpmemblk

This library supports arrays of pmem-resident blocks, all the same size, that are atomically
updated. For example, a program keeping a cache of fixed-size objects in pmem might
find this library useful.

� libpmemlog

This library provides a pmem-resident log file. This is useful for programs like databases
that append frequently to a log file.

� libvmem

This library turns a pool of persistent memory into a volatile memory pool, similar to the
system heap but kept separate and with its own malloc-style API.

� libvmmalloc

This library transparently converts all the dynamic memory allocations into persistent
memory allocations. This allows the use of persistent memory as volatile memory without
modifying the target application.

� libpmempool

This library provides support for offline pool management and diagnostics. Currently it
provides only “check” and “repair” operations for pmemlog and pmemblk memory pools,
and for BTT devices.
8 Introducing the Programming Model of Intel Optane DC Persistent Memory

Usage scenarios

In practice, PMEM can be used to store persistent objects using libpmemobj. Prototypes exist
that enable using PMEM as follows:

� Implementing (simple) mysql storage engine with libpmemobj

http://pmem.io/2015/06/02/obj-mysql.html

� Redis, enhanced to use PMDK’s libpmemobj (limited prototype):

https://github.com/pmem/redis

� Redis, using persistent memory

https://github.com/pmem/pmem-redis

PMEM can also be used as a cache layer for the underlying storage devices in SAP HANA,
Apache Kudu, and others.

� Apache Kudu persistent memory enabled block cache:

http://pmem.io/2017/04/03/cloudera-kudu-pmem-enabled-block-cache.html

Author

Peng Liu is a Linux Engineer at the Lenovo Data Center Group in Beijing, China. He joined
the OS team in 2017. His main interests are storage and memory management kernel
subsystems. Currently he is working on persistent memory-related Linux kernel development.

Thanks to the following people for their contributions to this project:

� Mark T. Chapman
� Pei Yue
� David Watts, Lenovo Press
 9

http://pmem.io/2017/04/03/cloudera-kudu-pmem-enabled-block-cache.html
https://github.com/pmem/pmem-redis
https://github.com/pmem/redis
http://pmem.io/2015/06/02/obj-mysql.html

Notices

Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult
your local Lenovo representative for information on the products and services currently available in your area.
Any reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any Lenovo intellectual property right may be used instead. However, it is the user's responsibility
to evaluate and verify the operation of any other product, program, or service.

Lenovo may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

Lenovo (United States), Inc.
1009 Think Place - Building One
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. Lenovo may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

The products described in this document are not intended for use in implantation or other life support
applications where malfunction may result in injury or death to persons. The information contained in this
document does not affect or change Lenovo product specifications or warranties. Nothing in this document
shall operate as an express or implied license or indemnity under the intellectual property rights of Lenovo or
third parties. All information contained in this document was obtained in specific environments and is
presented as an illustration. The result obtained in other operating environments may vary.

Lenovo may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this Lenovo product, and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled environment. Therefore, the result
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.
© Copyright Lenovo 2019. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by Global Services
Administration (GSA) ADP Schedule Contract 10

This document was created or updated on August 23, 2019.

Send us your comments via the Rate & Provide Feedback form found at
http://lenovopress.com/lp1194

Trademarks

Lenovo, the Lenovo logo, and For Those Who Do are trademarks or registered trademarks of Lenovo in the
United States, other countries, or both. These and other Lenovo trademarked terms are marked on their first
occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law
trademarks owned by Lenovo at the time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of Lenovo trademarks is available on
the Web at http://www.lenovo.com/legal/copytrade.html.

The following terms are trademarks of Lenovo in the United States, other countries, or both:

Lenovo(logo)® Lenovo®

The following terms are trademarks of other companies:

Intel, Intel Optane, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
 11

http://www.lenovo.com/legal/copytrade.html

	Go to this document on lenovopress.com
	Front cover
	Abstract
	Contents
	Introduction
	Programming Model
	Programming challenges
	Making changes durable
	Making changes atomic
	Persistent Memory allocation
	Making data position-independent

	Persistent Memory Development Kit
	libpmem: Basic persistence support
	libpmemobj: General-purpose allocations and transactions support
	Libraries for specific use cases

	Usage scenarios
	Author
	Notices
	Trademarks

