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The ubiquitous use of virtual machines to process network traffic in modern communication and computing infrastructure
has exposed limitations and obstacles to system scalability. These challenges call for innovative performance
optimization strategies.

On the one hand, networks are rapidly evolving to support new use-cases, including mobile edge computing, network
slicing in 5G, orchestration engines, video analytics, security, and SD-WAN (Software-Defined Wide Area Networks), to
name a few. On the other hand, Network Functions Virtualization (NFVs) are becoming a fundamental building block for
many of these environments.

With the advent of Network Functions Virtualization, virtual machines became a core element of packet processing.
Despite their flexibility, cost, elasticity, and security advantages, Network Functions Virtualization has the difficult task of
sharing computational resources while running alongside other workloads.

Lenovo’s deep technical partnerships with industry leaders ensures that Communications Service Providers (CoSPs)
can choose among the highest performance and optimized solutions with confidence.

These collaborations enable Lenovo to simplify the selection and deployment of hardware and software needed for
today’s network workloads and to accelerate Communications Service Providers’ (CoSPs) migration to Network
Functions Virtualization (NFV).

With the latest Intel® Select Solutions for NFVi Forwarding Platform Reference Design, CoSPs can plan their
development efforts to achieve Control and User Plane Separation (CUPS), ensuring low network Edge latencies and
maximum efficient use of resources. As a key component of these offerings, Network Functions Virtualization allow the
deployment of networks faster, while also reducing costs, and scaling endlessly.

This paper describes techniques to assess Network Functions Virtualization performance and strategies to optimize
latency and throughput. To that end, a network stress test framework was developed to automate the collection of
performance metrics. Once a baseline was established, the effect of several optimization strategies and their
performance impact was evaluated. Finally, we consolidated insights and recommendations about the most efficient
performance optimization techniques for different use-cases.

Lenovo ThinkSystem SR650 and SR630 servers were used in the development labs, where stringent workload and
traffic scenarios were tested, and optimization techniques evaluated.

The optimization techniques considered include CPU reservation methods, process scheduling priority, process I/O
priority, memory allocation, storage allocation, storage access methods, caching, and batch processing applied to
received packets. For each strategy, a variable number of workloads were deployed in computing hosts. Throughput
and latency were measured, and the effectiveness of each strategy (increasing bandwidth, decreasing latency) was
analyzed.

Based on our experience, there is no one-size-fits-all when it comes to optimizing network performance. Nevertheless,
there are guidelines applicable to specific parameters (i.e., throughput, latency) and the system's scale.
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Figure 1. NFV Introduction

Test Environment

Our test environment's foundation consists of commodity servers running a Linux-based operating system with
virtualization enabled using KVM, QEMU, and libvirt.

e KVM (Kernel-based Virtual Machine) is a virtualization module in the Linux kernel, which gives the kernel the
ability to function as a hypervisor.

e QEMU (Quick EMUIlator) is an open-source emulator capable of emulating a machine's processor. It provides
several device models that enable machines to run various guest operating systems. When used alongside KVM,
it allows virtual machines to run at near-native speed by taking advantage of hardware extensions such as Intel
VT-x.

o libvirt is an open-source API, daemon, and management tool that can orchestrate the virtualization functions
performed by KVM and QEMU.

The figure below depicts the relationships between these elements in a typical server:

As a terminology note, we will use the terms server and compute node interchangeably throughout this document.
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Figure 2. Server Virtualization Components

The virtualized servers are used to deploy application workloads, which are virtual machines running the user's
applications (e.g., web servers, databases). To perform their functions, these applications typically communicate with
each other. In some cases, the communication is local within the same infrastructure (i.e., data center, edge location). In
contrast, in other cases, these applications communicate with external hosts (i.e., outside the data center, remote sites,
public Internet).

This paper's scope comprises network traffic flowing among application workloads running in different servers within the
same infrastructure or facility. The decision to focus on the "East-West" traffic is based on [10]. There it is shown that
this direction comprises around 80% of the data-center traffic. In the upcoming diagrams and descriptions, we will refer
to this environment as an on-prem infrastructure.

The following diagram represents the relevant traffic flows with the blue arrows.
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Figure 3. Sample Application Workload Traffic Flows

Virtual Networks

Network traffic associated with application workloads is processed based on the concept of Virtual Networks (VNET). In
these networks, packets produced by virtual machines are first converted to physical network packets. They are then
tunneled or translated through the physical network until they reach the receiving endpoint. They are converted back to
the virtual network context and delivered to the receiving endpoint. The overlay network provides the agility needed to
support modern applications, whereas the underlay network offers robustness.

A VNET can be understood as a logical Layer 2 network, which implements a broadcast domain. Therefore, VNETs are
functionally similar to traditional ones.

Network Functions Virtualization (NFV)

Network Functions Virtualization (NFVs) are virtualized network services running on open computing platforms formerly
carried out by proprietary, dedicated hardware technology. Common NFVs include virtualized routers, firewalls, load-
balancers, WAN optimization, and network address translation (NAT) services.

Most NFVs are run in virtual machines (VMs) on standard virtualization infrastructure software. Throughout this
document, we will refer to these specialized virtual machines as NFV VMs.

Given the Layer 2 nature of the VNETSs, the NFV VMs act as the routing gateways or next hop for application workloads
communications targeting destinations sitting on different VNETSs. In other words, L3 routing is performed within the
NFV VM to allow communication between distinct VNETSs.

In our test environment, we configured two vNICs (Virtual Network Interface Cards) per NFV VM. The internal vNIC is
used for communication with other application workload vNICs within that same VNET. In contrast, the external vNIC is
used to communicate externally to other VNETS.

The following figure represents a NFV VM and its components, highlighting the internal and external vNICs.
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Figure 4. NFV VM and Traffic Flows in a Single Server

The following diagram depicts a typical flow between two application workloads running in two distinct VNETs deployed
in different servers.
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Figure 5. NFV VM and Traffic Flows between Distinct Servers

Stress Test Framework

Scalability and stability are essential aspects of any modern distributed computing infrastructure. As a key player in this
space, Lenovo constantly designs and manufactures systems that exceed customer expectations.

In line with this strategy, we saw the need to evaluate the network performance of application workloads deployed as
virtual machines under stress conditions.

The first step consisted of developing a suitable test framework, which would allow us to detect performance
bottlenecks, identify stress points, and provide benchmarking capabilities.

The upcoming sections describe the framework and how it was leveraged to enable metrics collection and analysis.

For brevity, we will refer to application workload virtual machines simply as application VMs. Likewise, we will refer to the
specialized virtual machines running the virtualized network functions as NFV VMs.

Test Topology

The testing topology consists of two physical servers, each hosting a fleet of application VMs and logically grouped into
two different VNETS.

We considered the following options:

e Topology A: NFV VM for each VNET runs in the same server as the application VMs belonging to the same
VNET.

e Topology B: NFV VM for each VNET runs in the other server as the application VMs belonging to that VNET.

e Topology C: Both NFV VMs run on the same server. This topology has several variants, depending on the
specific servers hosting the NFV VMs and the distribution of application VMs across servers.

e Topology D: Extend the basic topology to include a third server in which the NFV VMs run. Application VMs are
started in the other two servers. Although this topology is theoretically attractive, it may lead to extra resource
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consumption and complexity without clear benefit.

We conducted lab tests leveraging all four topologies highlighted. During the process, we realized that:

There is no one-size-fits-all topology.

Executing tests on a wide variety of topologies is cumbersome, and it is hard to reason and draw valid
conclusions.

Therefore, for this paper's scope, we decided to build the framework based on Topology A. As a result, all application
VMs belonging to a given VNET will run in the same server where the corresponding NFV VM is deployed. In production
deployments, this is unlikely to happen. However, it is a reasonable and acceptable approach that simplifies both the
actual testing framework and its analysis.

The following diagram depicts the topology employed in our framework.
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Figure 6. Stress Test Topology and Basic Flows

A few notes about the previous diagram:

The Network Infrastructure block represents the Linux Kernel portions responsible for controlling, processing, and
filtering packets as they are sent or received by virtual machines.

The orange and green arrows represent the traffic flowing among the green and orange application VMs.

Regarding the traffic flow terminology, we will refer to this traffic as North-South because it crosses the logical
boundaries of each VNET. Note that this is not the North-South traffic as related to the data center itself. This is
still "East-West" traffic from the data center standpoint.

It is essential to highlight that we did not evaluate any traffic sourced or destined to a host outside the on-prem
infrastructure network. The rationale is that such traffic goes through network components outside of the NFV
control, our analysis's primary target.

The arrow with sequential numbers from 1 to 10 is a high-level depiction of the path takes by packets flowing
between the two sets of application VMs.

NST (Network Stress Test) Framework

The NST framework was developed in-house by Lenovo engineers. It is a combination of open-source software and
proprietary scripts.

Purpose
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The main goal of the NST framework is to collect throughput, latency, and jitter information., which are defined as
follows:

e Throughput: Maximum number of operations (e.g., data a device or system can transfer send/receive) per time
unit — RPS/QPS, Mbps, Kbps.

o Latency: Time it takes for data to go through a device or system — s, ms, us.

o Jitter: The latency variation on a packet flow between two systems when some packets take longer to travel from

one system to another. We will not cover jitter in the following sections. However, we did collect the data for
future analysis.

The collection takes place inside each application VM while steady traffic purposely flows through the network.

In other words, the setup consists of starting application VMs on the participating servers and measuring the
approximate throughput, latency, and jitter observed from the perspective of each individual application VM.

The framework is extensible, and it can collect other metric types. This is accomplished simply by sending any generic
Linux command to all application VMs and collecting the relevant data. For example, the framework has been used to
gather IOPS information. Nonetheless, this kind of capability and potential extensions are out of the scope of this paper.

Framework High-Level Details

At a very high level, NST creates two types of application VMs called clients and servers. All clients are logically bound
to one VNET and, hence, to one compute node. In contrast, all VMs playing the servers' role are bound to the other
VNET and its corresponding compute node. Clients and servers are paired based on their IP addresses so that each
client communicates with precisely one server, as shown in the following picture.
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Figure 7. Networking Stress Test Framework and Client/Server Detalil

The NST framework operates based on the worst-case scenario, where all clients start communicating with the
corresponding servers simultaneously. Furthermore, clients try to inject as much traffic as they possibly can.

The traffic measurement utilities we are using are gperf and iperf.
The gperf utility is used to determine the TCP throughput and latency, whereas iperf is used to assess jitter.

It is relevant to mention that these tools are not 100% reliable, and multiple test iterations lead to slightly different results.
Moreover, other metrics such as median and percentiles provide more insights into worst-case scenario trends as
suggested in [5]. Nonetheless, the key objective of this work is to provide guidelines. Therefore, we are more interested
in trends than absolute numbers (e.g., latency decreases as a function of specific parameter changes).
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We decided not to measure UDP performance because, as we indicated earlier, all application VMs send as much traffic
as they can from the beginning. As UDP is a very aggressive protocol, we would end up with a few application VMs
consuming all available resources with no flow control mechanisms.

The host operating system deployed in the com servers is Linux based on RedHat 7.5 (RHEL) distro. We leveraged the
QEMU KVM and libvirt packages from the RedHat virtualization repository (RHEV) for virtualization. The application
VMs operating system is a minimal RedHat 7.4 installation where we have just added the qperf and iperf packets.

Optimization Strategies

As Figure 5 indicates, the NFV VM must route all traffic flowing between the client and server application VMs
associated with different VNETSs.

The NFV VM is deployed as a virtual machine, which uses the Linux kernel as the routing engine. As a result, we
realized that we had many potential avenues for improvement by modifying how the NFV VM is treated, managed, and
controlled by the host machine kernel/hypervisor.

In the following sections, we will first discuss the methodology used to establish our baseline. Then, we will describe the
various strategies that can be used to tune the way the host machine kernel/hypervisor manages the NFV VM.
Baseline

The test setup depicted in Figure 6 is used for all data collections.

We defined our baseline as the performance data collected using the default settings in force within the servers. These
settings match the default configuration, which comes out of the box with the RHEL (Operating System) and RHEV
(Virtualization).

Strategies

The following table summarizes the optimization strategies considered

Table 1. Optimization Strategies

Domain NFV VM Strategy Description

CPU Reservation Pinned Pin NFV VMs to one of the CPU cores
Reserves Reserve one of the cores just for NFV VMs.

Priority Process priority Assign higher scheduling priority to NFV VMs.
1/O Priority Assign higher 1/O priority to NFV VMs.

Memory and Storage KSM Kernel Same Page merging disabled.

Packet Processing RX Batch Reduced interrupt handling overhead.

In the upcoming sections, we will go into detail about each strategy.

CPU Reservation

This strategy is exemplified in [1]. It involves setting processors and processing core affinities for hypervisor guests
using services provided by the virtualization library. Our test environment operates using the libvirt virtualization library
and the KVM hypervisor. By default, libvirt provisions guests using the hypervisor's default policy. For most hypervisors,
the approach is to run guests on any available processing core or CPU.

Hence, our idea consisted of controlling the processing core affinity for the NFV VMs only.
This led us to conceive two approaches:

e Pinned: Pin the NFV VM to a specific core while still allowing all the other application VMs to use it.

e Reserved: Pin the NFV VM to a specific core, but do not allow any other application VM to use this core. In this
scenario, note that the host operating system itself can still use this core.

For the sake of consistency and simplicity, we decided to pin the NFV VMs to the last available core (e.g., core 27 out of
28 available cores, since core numbers are zero-based).
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The reasoning for these settings is to exploit cache locality. Pinning allows VMs to take advantage of L1 and L2 caches,
which are core-specific, more efficiently. Besides, the reserved core strategy relieves pinned cores from processing
interrupts from network cards and storage controllers.

Process Priority

The default behavior of operating systems in virtualized environments is to prioritize virtual machines after all other
processes. This observation opens the door for a second optimization strategy, increasing the priority assigned to the
NFV VMs.

There are two different priorities, which can be modified for this purpose:

e Process Priority: [8] explains a method that can be leveraged to increase the scheduling priority of the NFV VMs.
Theoretically, these settings would allow the NFV VMs to process packets more often. On the other hand, this
may expose the NFV VMs to a vast volume of computations under heavy traffic conditions. Therefore, there is a
risk that this prioritization could starve all the other processes. To minimize such a risk, and based on [7], we
decided to increase the NFV VM priority to the value -10, which sits in the 75% percentile, but it is not the
highest priority. As a side note, Linux uses a priority system with 40 priorities, ranging from -20 (highest priority)
to 19 (lowest priority). Processes started by regular users usually have priority 0. This is precisely the default
priority assigned to the application VMs in our platform.

o |/O Priority: [6] describes a technique that can be used to increase the 1/0 scheduling class for the NFV VMs.
Each class is assigned a priority from 0 to 7, with the smallest number mapping the highest priority. For this
study, we focused on the following classes:

e Best Effort: This is the class commonly associated with processes.
e Real-Time: Processes mapped to this class are always granted first access to 1/0.

Our proposal was to map the NFV VMs to both classes and pay special attention to the real-time class's performance
impact. It is relevant to highlight that caution is required with this approach because it may starve other processes.
Memory and Storage

Networking stress tests, by nature, imply a lot of memory accesses. For each received packet, NFV VMs need to check
both the routing and ARP tables. As a result, we realized that leveraging memory optimization techniques can make a
lot of sense. We proposed the use of Kernel Same-Page Merging (KSM).

KSM [3] allows multiple KVM virtual machines to share identical memory pages. This avoids memory duplication at the
cost of more significant write times. The system first needs to check if there are any pages similar to the one queued for
writing.

One must keep in mind that disabling this setting affects all virtual machines.

Packet Processing

Like physical interfaces, packets being received by VMs can be batched before being delivered to the guest operating
system kernel [2]. Grouping received packets saves time with the interrupt handling in the kernel, improving caching
utilization.

KVM VMs can be configured to batch multiple packets before processing them. We have configured the NFV VMs to
batch 10 packets before processing them.

Results

We have performed tests while running the following number of application VMs: 10, 100, and 200.

The lowest number is helpful to analyze the system under "normal” conditions. The 100 VMs are probably at the far end
of the "normal" conditions, whereas 200 VMs generate stress conditions for the system under test.

For each number of VMs, we ran 100 iterations, where each iteration consists of the following steps:

e Start the VMs.
Pair the VMs (i.e., establish a client->server connection in the gperf terminology).

Send traffic from the clients to the servers for 2 minutes.

Collect the performance results for each VM.
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e Wait for 2 minutes.

Using this algorithm, we gathered the following number of data points throughout the 100 iterations:

Table 2. Results

Number of VMs Number of Data Points
10 1,000

100 10,000

200 20,000

For each set of data points, we extracted the following metrics, whose calculation method are described at [9]:

50% percentile

90% percentile
e 95% percentile
e 99% percentile

The 50% percentile represents the typical case. The higher percentiles allow us to consider the worst-case scenarios,
the shape of the distribution, and its variance. According to [5], two considerations are essential:

e Percentiles tell us more than averages: Percentiles allow us to consider the shape of the distribution and its
differing attributes. For instance, a high-order percentile, such as the 99th or 99.9th, shows you a plausible worst-
case value. Using the 50th percentile (also known as the median) emphasizes the typical case. The higher the
variance in response times, the more the specific user experience is affected by long-tail behavior.

e Higher percentiles are more relevant to the end user's experience: Imagine that we have 1,000 data points. The
goal of our system is to meet a latency requirement of fewer than 200 milliseconds. Let's say that the average
latency measured is 75 milliseconds, but 5% of the packets experience a latency of 10 seconds. Even though on
average, the system meets the requirements, the long-tail or worst-case may be unacceptable. The 5% of the
users facing 10 seconds latency will probably stay away from this product. User studies cited suggest that people
usually prefer a slightly slower system to high variance in response times.

Comparative Results Tables

Below are the results between all the strategies compared to the baseline measurements. We have highlighted in green

the best plan for each pair (metric, number of VMs).

Due to space limitations, we used short table headers, and here is the mapping between the columns in the table and

the strategies we evaluated:

Table 3. Column Mapping

NFV VM Strategy Column Title
Pinned Pinned
Reserved Reserve
Process Priority Renice

I/O Priority — Best Effort Class lonice BE

I/O Priority — Real Time Class lonice RT
KSM KSM

RX Batch RX Batch
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Table 4. Throughput (Mbps)

Baseline lonice BE lonice RT | Renice KSM Pinned Reserved RX Batch
Metric VMs(Mbps) | (Mbps) (Mbps) (Mbps) (Mbps) (Mbps) | (Mbps) (Mbps) (Mbps)
Average |10 1085 935 934 927 920 1106 1085
100 71 68 68 68 68 85 93
200 27 27 28 23 24 25 27
50% 10 1095 919 924 914 903 1095 1095
Percentile 4o 72 65 64 65 65 80 )
200 24 23 24 20 20 21 24
90% 10 1218 1136 1105 1126 1126|1320 1218
Percentile [10g 88 84 85 85 85 109 111
200 33 32 33 29 29 31 33
95% 10 1249 1187 1146 1177 1208 [ 1382 1249
Percentile [10g 08 95 9 96 9 124 121
200 41 43 42 37 40 44 41
99% 10 1341 1331 1228 1280 1413|1628 1351
Percentile [10g 147 133 140 134 132 169 162
200 108 118 102 104 89 107 104

Table 5. Latency (ms)

Baseline lonice BE lonice RT Renice KSM Pinned Reserved RX Batch
Metric VMs(Ms) | (Ms) (Ms) (Ms) (Ms) (Ms) (Ms) (Ms) (Ms)
Average |10 221 208 210 209 215 222 221
100 1323 1318 1318 1318 1321|1322 1243
200 2888 2790 2809 2788 2776 | 2856 2958
50% 10 221 211 209 215 223 221
Percentile 40 1360 1310 1320 1320 1320 [1320 1260
200 2920 2820 2830 2820 2810  [2900 3010
90% 10 215 204 205 204 210 217 215
Percentile  ['1g9 1260 1250 1250 1250 1250 | 1260
200 2670 2570 2620 2620 2570 | 2630 2700
95% 10 214 202 203 202 209 215 214
Percentile 459 1240 1230 1220 1230 1220 [1240 1160
200 2550 2500 2470 2430|2480 2520 2420

Result Analysis

After analyzing all the data, the conclusion is that there is no "one size fits all" answer. The optimization strategy
depends on the number of application VMs started and the relevant parameter into consideration (i.e., throughput or
latency).

Based on the results, we were able to draw the following conclusions:

e For a small number of VMs, if we want to optimize the throughput, the best strategy is to reserve a core for the
NFV VM. But suppose our goal is to optimize the latency. In that case, the best approach consists of increasing
the 1/O priority of the NFV VM.

e For many VMs, the best strategy to optimize the throughput is to use the default Linux and KVM settings.
However, for optimizing the latency, then RX batching is the best option.

e For a fair number of VMs (without stressing the system), the best strategy to optimize both throughput and
latency at the same time is to reserve a CPU core for the NFV VM.

Performance Optimization Strategies for Network Functions Virtualization 12



e For alarge number of VMs, it is challenging to optimize both throughput and latency simultaneously.

The following diagram summarizes the best strategy for the number of VMs and the metric being optimized. Depending
on use cases, other metrics can be used, which might highlight different better strategies.
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Figure 8. Recommended Optimization Strategies per Use Case

Conclusion

This study's main conclusion is that the number of VMs greatly influences what strategy is better to optimize the
throughput and latency. There is no single nor straightforward answer. It depends on the system use case. Sometimes
one needs to sacrifice some throughput performance to gain better latency and vice-versa.

There are two possible directions to follow to make an even more data-driven decision when configuring the most
efficient environment for virtualized network functions.

One is to find some more singular strategies (e.g., reserve a part of the CPU L3 cache for the NFV VM).

The second direction is to combine various singular strategies (e.g., reserved NFV VM and I/O priority with real-time
class, RX batching plus pinning NFV VM, etc.).

Ultimately, the best recommendation is an adaptive strategy based on the system's scale and the specific parameter,
which is more relevant for the use case. Many systems, which provide the back end to user-facing services focus on
latency. Some examples of such systems include social media newsfeed, E-commerce applications, video streaming
platforms, etc. On the other hand, batch processing systems typically give more relevance to throughput.
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Notices

Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your local Lenovo
representative for information on the products and services currently available in your area. Any reference to a Lenovo product,
program, or service is not intended to state or imply that only that Lenovo product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any Lenovo intellectual property right may be used
instead. However, it is the user's responsibility to evaluate and verify the operation of any other product, program, or service.
Lenovo may have patents or pending patent applications covering subject matter described in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.

8001 Development Drive

Morrisville, NC 27560

U.S.A.

Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes will be incorporated in new editions of the publication. Lenovo may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time without notice.

The products described in this document are not intended for use in implantation or other life support applications where
malfunction may result in injury or death to persons. The information contained in this document does not affect or change Lenovo
product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under
the intellectual property rights of Lenovo or third parties. All information contained in this document was obtained in specific
environments and is presented as an illustration. The result obtained in other operating environments may vary. Lenovo may use
or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any manner serve as
an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this Lenovo product, and
use of those Web sites is at your own risk. Any performance data contained herein was determined in a controlled environment.
Therefore, the result obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on generally available
systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of
this document should verify the applicable data for their specific environment.

© Copyright Lenovo 2025. All rights reserved.

This document, LP1495, was created or updated on June 28, 2021.
Send us your comments in one of the following ways:

e Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP1495

e Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP1495.
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Trademarks

Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other countries, or
both. A current list of Lenovo trademarks is available on the Web at https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®
ThinkSystem®

The following terms are trademarks of other companies:

Intel® is a trademark of Intel Corporation or its subsidiaries.

Linux® is the trademark of Linus Torvalds in the U.S. and other countries.

IBM® and ibm.com® are trademarks of IBM in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
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