

Microsoft Azure SQL Edge
with Lenovo ThinkSystem
SE350 Solution Guide

Highlights the benefits of
ThinkSystem SE350 Edge
Server

Presents a use case for SQL
Server on Lenovo Edge
devices

Provides deployment
information and best practices

Includes list of all software
package download URLs

David West
Vinay Kulkarni

Last update: 01 December 2021

Version 1.1

https://lenovopress.com/updatecheck/LP1531/1d18bcdff3f0aa1d185f46cbc381847f

 i Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Table of Contents

1 Introduction ... 1

2 Business value .. 2

3 Architectural overview ... 3

4 Deployment prerequisites .. 4

5 IoT Edge device setup .. 5

5.1 Create an IoT Hub in Azure .. 5

5.2 Install Moby Engine prerequisites on edge device ... 5

5.3 Install Moby Engine .. 5

5.4 Install the IoT Edge components .. 6

5.5 Register the device with Azure IoTHub .. 6

5.6 Configure IoT Hub connection ... 6

6 Azure SQL Edge - Azure IoT Edge method ... 8

7 Azure SQL Edge - Docker method .. 12

8 Connecting to the SQL Edge container .. 13

8.1 Connect to the container CLI ... 13

8.2 Connect to the SQL instance with SSMS ... 13

9 Add data volumes to SQL Edge container ... 14

10 Performance Data ... 15

11 Sample Use Case - IoT streaming data ... 16

11.1 Download the code .. 16

11.2 Prepare Visual Studio for Azure IoT projects ... 16

11.3 Load the project file in Visual Studio .. 17

 ii Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

11.4 Create a Container Registry in Azure ... 17

11.5 Edit the code and push the build to Azure .. 17

11.6 Deploy the simulator module to the IoT Edge device ... 18

11.7 Create the database for the simulator data .. 20

11.8 Add routes to IoT Edge Module ... 20

11.9 Verify streaming data flow and analyze results .. 21

11.10 Data Retention settings .. 21

12 Appendix: Bill of Materials ... 22

12.1 ThinkSystem SE350 for Azure SQL Edge BOM ... 22

Conclusion .. 23

Resources ... 23

1 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

1 Introduction

The Internet of Things (IoT) is the name coined for the billions of physical devices around the world that are
connected to the internet, all collecting and sharing data. With cheap computer chips and the spread of
wireless networks it's possible to turn any small or large thing into an IoT device. By adding sensors to these
objects and connecting them to the internet converts them into intelligence devices. Data generated by these
edge devices can be collected and mined to make customer lives better or improve profits for businesses.
Data generated needed to be uploaded to the public cloud for processing which compromised security and
increased latency. Azure SQL Edge is a very small footprint, robust IoT database product from Microsoft that
can run on these edge devices to process the data locally for increased security and reduced latency.

The combination of Microsoft Azure SQL Edge and Lenovo’s innovative ThinkSystem SE350 Edge Server
provides the ideal edge gateway solution for processing data aggregated from scores of IoT devices. Azure
SQL Edge is a fully containerized solution compatible with most docker container engines. It can run on any
Intel, AMD, or ARM64 device and includes native support for data streaming (the same engine that powers
Azure Stream Analytics). It has many security features like data encryption, classification, and access
controls. Azure SQL Edge also has Time Series Processing and ML inferencing capabilities. ML Models can
be trained on premises and deployed to the edge where inferencing can be done on data that is being
collected.

This white paper walks you through the steps required to set up and run Azure SQL Edge on the SE350. It
also provides some performance data with Azure SQL Edge running on the SE350.

This solution can also be implemented on ThinkAgile MX1020 Integrated system or ThinkAgile MX1021
certified nodes for high availability.

2 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

2 Business value

Microsoft Azure SQL Edge extends the performance and security of the very popular Microsoft SQL Server
engine to the intelligent edge. It is optimized for IoT gateways and devices, is available in an easy to deploy
modern container format and has a very small footprint of around 500MB. Azure SQL Edge provides the
RDBMS features of a full version of Microsoft SQL Server along with real-time insights, built-in streaming,
storage, and support for AI. Azure SQL Edge helps customers with their application modernization journey so
they can develop their application once and deploy anywhere across the edge, their datacenter and Azure.

Azure SQL Edge has simplified pricing that is well suited for IoT deployments. Azure SQL Edge follows a per
device pricing model as listed below in table number 1. Purchasing one unit of Azure SQL Edge provides
usage rights to run Azure SQL Edge on one device.

Product Pay as you go 1 Year Reserved 3 Year Reserved

Azure SQL Edge $10/device/month $100/device/year $60/device/year

Table 1. Azure SQL Edge pricing

Billing starts when an Azure SQL Edge is deployed to devices, irrespective of whether the SQL process is
running/failed/stopped.

3 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

3 Architectural overview
Azure SQL Edge is a compact, containerized version of SQL Server for Linux that is designed to run on
smaller edge devices at remote locations. The system can run disconnected from Azure or a data center and
then reconnect later to sync data.

Ideal use cases include using SQL Edge as a local database for IoT devices in retail or similar environments.

With the Azure connected model, an Azure IoT Hub is used to connect to an Azure defined IoT Edge device.
Then the Azure SQL Edge module, which is a container, is deployed to the edge device.

The following diagram, complements of Microsoft, provides a high-level view of it.

Figure 1 Overview of Azure SQL Edge architecture. Drawing credit, Microsoft

More information on the SQL Edge architecture can be found here:
https://docs.microsoft.com/en-us/azure/azure-sql-edge/overview

https://docs.microsoft.com/en-us/azure/azure-sql-edge/overview

4 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

4 Deployment prerequisites
There are several concepts and pre-requisites to be aware of before deploying the solution. There are two
deployment options. The more complex one is the Azure connected method, while the disconnected Docker
container approach is rather straight forward.

For the connected option there is a requirement for an IoT Hub in Azure, along with a corresponding
connected IoT Edge device which is where the SQL Edge container is deployed to. The IoT Edge device is a
Linux system, which can be any size system or even a virtual machine running on an edge system.

Microsoft’s documentation and packages are based on Ubuntu or Raspberry PI platforms. These 2 are the
only Tier 1 supported platforms for the IoT Edge device (see the link below). There are several Tier 2 systems
which should work fine but are not fully tested, supported, or as well documented by Microsoft. Lenovo’s
preference for this project was to use Red Hat Enterprise Linux (RHEL) for the IoT Edge device OS and the
only Red Hat version on the Tier 2 list is RHEL 7.x. As a result, the deployment tested and detailed in this
guide is based on RHEL 7.9 with specific RPM package links and dependency information for this OS. Setting
this up on a Tier 2 platform requires more effort to find the right combination of supported packages and
dependencies, which we have already worked through for you and provide in the sections below.

More information on the supported platforms for the IoT Edge device is available at:
https://docs.microsoft.com/en-us/azure/iot-edge/support?view=iotedge-2020-11#operating-systems

Specific package pre-requisites are covered in each component section that follows. Since most of the
packages are not included in the usual Red Hat repositories, this guide includes the URLs to download the
RPMs via wget and the commands to run the installations.

The deployment steps below assume access to an Azure account and an edge device has been provisioned
running RHEL 7.x, with internet connectivity.

https://docs.microsoft.com/en-us/azure/iot-edge/support?view=iotedge-2020-11#operating-systems

5 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

5 IoT Edge device setup
The IoT Edge devices are based on the Moby container engine, which is essentially open-source Docker. This
is the container engine Microsoft requires. The packages below are the most recent at the time of writing. As
time goes by, these may need updating, by looking in the same packages.microsoft location.

For each of the packages below, use the wget command to download the RPM packages.

Example: Sudo wget https://url_to_package.rpm

5.1 Create an IoT Hub in Azure
Follow the steps in this link to setup an IoT Hub in Azure, it is a simple wizard driven setup. The hub will be
used later to register, connect, and manage the IoT Edge device.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal

5.2 Install Moby Engine prerequisites on edge device
There are 3 packages that must be installed as Moby engine dependencies. They must be installed in the
order provided below to satisfy the dependencies. Use sudo wget <url> to download these.

Download links for the packages:

1. Container-selinux
http://mirror.centos.org/centos/7/extras/x86_64/Packages/container-selinux-2.119.2-
1.911c772.el7_8.noarch.rpm

2. Moby-runc
https://packages.microsoft.com/centos/7/prod/moby-runc-1.0.0~rc95%2Bazure-1.x86_64.rpm

3. Moby-containerd
https://packages.microsoft.com/centos/7/prod/moby-containerd-1.4.8%2Bazure-1.el7.x86_64.rpm

Install each of these one at a time, in order, as there is a y/n prompt on each one. Change to the directory
where the packages were downloaded and install each one with the following yum command.

Sudo yum install <package name.rpm>

5.3 Install Moby Engine
After the 3 dependency packages are installed, proceed with downloading and installing the Moby container
CLI and engine. These are two separate packages to install.

Download links for Moby Engine and CLI:

Moby-cli
https://packages.microsoft.com/centos/7/prod/moby-cli-20.10.7%2Bazure-1.x86_64.rpm

https://url_to_package.rpm/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
http://mirror.centos.org/centos/7/extras/x86_64/Packages/container-selinux-2.119.2-1.911c772.el7_8.noarch.rpm
http://mirror.centos.org/centos/7/extras/x86_64/Packages/container-selinux-2.119.2-1.911c772.el7_8.noarch.rpm
https://packages.microsoft.com/centos/7/prod/moby-runc-1.0.0%7Erc95%2Bazure-1.x86_64.rpm
https://packages.microsoft.com/centos/7/prod/moby-containerd-1.4.8%2Bazure-1.el7.x86_64.rpm
https://packages.microsoft.com/centos/7/prod/moby-cli-20.10.7%2Bazure-1.x86_64.rpm

6 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Moby-engine
https://packages.microsoft.com/centos/7/prod/moby-engine-20.10.7%2Bazure-1.el7.x86_64.rpm

Install each of these, one at a time, with the following command.

Sudo yum install <package name.rpm>

5.4 Install the IoT Edge components
After the Moby engine is installed, the two IoT Edge components can be installed. These must be installed in
the order listed below, to meet dependencies.

Download links for the two IoT Edge files:

https://github.com/Azure/azure-iotedge/releases/download/1.1.4/libiothsm-std_1.1.4-1.el7.x86_64.rpm

https://github.com/Azure/azure-iotedge/releases/download/1.1.4/iotedge-1.1.4-1.el7.x86_64.rpm

Install each of these, one at a time, with the following command.

Note: These use the rpm command below, not the yum installer as previously used.

Sudo rpm -Uhv <package name.rpm>

5.5 Register the device with Azure IoTHub
The Edge device needs to be registered with an IoTHub to enable it as a connected Edge device. Follow the
steps in the below link to register the device. For test or proof of concept configurations, the symmetrical key
method is the simplest approach.

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-
portal

After the device is registered, open the object and copy the connection strings. These are used to configure
the IoTEdge connection in the next step.

5.6 Configure IoT Hub connection
The IoT Edge device needs connection strings configured to allow it to connect with the IoT Hub. Open the
configuration file located at:

 /etc/iotedge/config.yaml

Using vi or a similar editor, find the below section and add the connection string where indicated, then save
the file. Note that this is a read-only file, so to save it in vi editor, use :wq! or the equivalent if using another
editor.

https://packages.microsoft.com/centos/7/prod/moby-engine-20.10.7%2Bazure-1.el7.x86_64.rpm
https://github.com/Azure/azure-iotedge/releases/download/1.1.4/libiothsm-std_1.1.4-1.el7.x86_64.rpm
https://github.com/Azure/azure-iotedge/releases/download/1.1.4/iotedge-1.1.4-1.el7.x86_64.rpm
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal

7 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Manual provisioning with an IoT Hub connection string (SharedAccessKey authentication only)
provisioning:

source: "manual"
device_connection_string: "<ADD DEVICE CONNECTION STRING HERE>"
dynamic_reprovisioning: false

Complete the remaining steps below to apply changes and verify the install.

1. To apply the new configuration, restart the IoTEdge service with the following command.

Sudo systemctl restart iotedge

2. Use this command to verify that the service is running.

Sudo systemctl status iotedge, shows the status of the service

 It should show a status of active (running)

View the IoT Edge device in the Azure portal within the IoT Hub device. It should show running, however until
the SQL Edge module is deployed there may be some errors showing. This is normal, proceed with the SQL
Edge deployment below, and afterwards it will show connected and online.

8 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

6 Azure SQL Edge - Azure IoT Edge method
Now that the IoT Edge device is configured and connected to the Azure portal, the next step is to deploy SQL
Edge to it from the Azure Marketplace. The Marketplace is an online listing of applications and services that
are designed and optimized for Azure. Follow the steps below to deploy the SQL Edge container module.

1. Search within Azure Marketplace for the Azure SQL Edge offering.

Figure 2 Azure Marketplace

2. From the list on the Azure SQL Edge page, choose developer or standard, and click Create

Figure 3 Create the SQL Edge module

3. On the Target Devices page, provide the following information where prompted:

a. Azure subscription number

b. IoT Hub name

c. IoT Edge device name

9 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Then click Create, at the bottom of the page.

Figure 4 Specify the target device

4. On the Set Modules page, click on the Azure SQL Edge module. The default name is set to
AzureSQLEdge, which is fine, but it can also be changed here.

Figure 5 Select module to deploy

5. This opens the Module Settings tab of the Update IoT Edge Module page. Set the values for Module
Name, Restart Policy and Desired Status per your requirements.

10 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Figure 6 Set module parameters and policy

6. On the Environment Variables section, specify the SQL SA password, language code (leave default
1033 for English) and collation options.

Figure 7 Set SQL password and language

7. For the Container Create Options section, there is a JSON file displayed. Here the module’s volume
bindings and SQL port number can be edited. Recommend leaving it at the default of 1433.

11 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Figure 8 Edit deployment JSON file parameters

8. Click Update on the Update IoT Edge Module panel to save the changes.

9. Click Review + Create, then click Create. Open the IoTEdge device and verify the modules are up.

Figure 9 Verify module is running on IoT Edge device

12 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

7 Azure SQL Edge - Docker method
This section covers basic docker deployment method. It does not use the Azure IoT edge components and
runs as a standalone SQL container on an edge device. This method is significantly easier, and a good option
for development or testing SQL Edge. It involves pulling and running the Docker image Microsoft has
provided.

1. Pull the image

sudo docker pull mcr.microsoft.com/azure-sql-edge:latest

2. Run the image

sudo docker run --cap-add SYS_PTRACE -e 'ACCEPT_EULA=1' -e
'MSSQL_SA_PASSWORD=yourPassword' -e 'MSSQL_PID=Premium' -p 1433:1433 --name
azuresqledge -d mcr.microsoft.com/azure-sql-edge

3. View the container to verify its running

sudo docker ps -a

At this point, use the methods in section 8 below to connect to the container or SQL instance.

13 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

8 Connecting to the SQL Edge container
After the SQL Edge container is deployed, there are several ways to connect and manage it. Connecting to
the container’s command line (CLI) enables viewing and configuring the file system and using other
command-based tools. Using SQL Server Management Studio (SSMS) allows a direct connection to the SQL
instance with a graphical interface to manage the databases.

8.1 Connect to the container CLI
Use the following Docker commands to connect to the container. Replace “azuresqledge” with whatever name
was used for the SQL Edge container.

sudo docker exec -it azuresqledge "bash"

This opens a command line bash shell directly at the root file system on the container.

8.2 Connect to the SQL instance with SSMS
To connect with SSMS, enter the IP address assigned to the container. If the default SQL Server port number
of 1433 was used during deployment, then SSMS should find the SQL instance and connect. Otherwise, use
a colon after the IP address and the alternate port number.

14 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

9 Add data volumes to SQL Edge container
This section covers adding separate data volumes to a SQL Edge container. Note that this only works on the
Docker deployment method (section 7). By default, the container and its SQL data directories all run on one
volume, which the entire container uses. To improve performance, this mounts separate data volumes that are
based on faster disks. This also makes the data persistent and separate, should the container be removed or
deleted.

1. The first step is to mount the volumes to the container host’s file system just like any other Linux
volume. With Linux, the volumes get mounted to a directory. In the next step these directories (the
volumes) are mounted as data volumes to the container.

2. Run this to get the image. sudo docker pull mcr.microsoft.com/azure-sql-edge:latest

3. Use the following command to create a SQL Edge container with the new data volumes mounted.

sudo docker run --cap-add SYS_PTRACE -e 'ACCEPT_EULA=1' -e
'MSSQL_SA_PASSWORD=yourPassword' -e 'MSSQL_PID=Premium' -p 1433:1433 --name
azuresqledge -d mcr.microsoft.com/azure-sql-edge -v <your host directory>/data:/var/opt/mssql/data -
v <your host directory>/log:/var/opt/mssql/log

The -v specifies the volume parameter, which includes the volumes directory on the host.

In the example above, its mounting a data and log volume. The mount points on the container are within the
default SQL installation directories on the container.

At this point, the SQL database and log files can be moved to these faster data volumes.

15 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

10 Performance Data
The performance tests are based on a 100 warehouse TPC-C database run with HammerDB. All tests used
64 GB RAM and 50 virtual users and varied the CPU count. The underlying storage for the VM’s data VHDs
were 6 disk RAID5 for the database and 2 disk RAID1 for the logs. The SE350 can be configured with up to
16 CPUs. By running performance tests up to 8 CPU there is remaining capacity for other applications, which
is typical of an edge server.

Figure 10 Performance testing

HammerDB is a database load testing and benchmarking tool. We used HammerDB to create a test schema,
load it with data and simulate the workload of multiple virtual users against the database for both transactional
and analytic scenarios. This workload can then be used to derive meaningful information about your
environment such as hardware performance comparisons and software configurations. The benchmark
involves a mix of five concurrent transactions of different types and complexity either executed online or
queued for deferred execution. we have performed TPC-C benchmarking with Microsoft SQL 2019 using the
widely accepted open-source benchmarking tool HammerDB. These results should not be compared actual
TPC-C benchmarks results officially published.

16 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

11 Sample Use Case - IoT streaming data
Azure SQL Edge provides a local database at the edge for IoT devices. It features streaming live data and
data retention policies to address limited storage on edge servers. This section covers deployment of an IoT
Edge module that simulates several IoT sensor devices.

The code for this has been provided by Microsoft and is available on GitHub. The application gets uploaded to
Azure as a docker image and deployed from there as a module to the IoT Edge device. Once deployed, it
generates simulated telemetry data and streams it to the Azure SQL Edge database.

A summary of the steps to deploy this simulator include:

• Prepare the Visual Studio environment and load the project file

• Create a Container Registry in Azure

• Edit the code and push the build to the Azure registry

• Deploy the module from Azure IoT Hub to the IoT Edge device

• Create the database for the simulator data and set the routes

11.1 Download the code
Microsoft has made the code available at the following GitHub location. Search for microsoft/sqlsourabh in
GitHub and download the entire repository.

11.2 Prepare Visual Studio for Azure IoT projects
There are a few prerequisites that need to be setup on the workstation that is running Visual Studio for this to
work correctly.

1. Windows Subsystem for Linux v2 (WSL). Follow the steps at this link to install. Note that things will go
smoother if the workstation is running a newer version of Windows 10, noted in the URL. After
installing WSL, it will install a version of Linux.
https://docs.microsoft.com/en-us/windows/wsl/install

2. Docker Desktop (Docker for Windows) It requires WSL v2, and the download and steps to install it are
here https://www.docker.com/products/docker-desktop

3. Verify the sources are in Visual Studio correctly. Go to Tools - Nuget package manager - Package
manager settings. Under Nuget Package Manager - Package sources, verify that Nuget.org is listed.
If not, enter it. The source URL to enter is: https://api.nuget.org/v3/index.json

4. To build the simulator module, Visual Studio needs to have the supporting IoT Edge related
extensions installed. Go to Extensions - Manage Extensions and search for IoT Edge. Look for Azure
IoT Edge Tools for VS 2019 and add it. Once selected, close Visual Studio so it can install it.

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.docker.com/products/docker-desktop

17 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

11.3 Load the project file in Visual Studio
From Visual Studio we will open the project file in the GitHub download by navigating to:
SQLEdgeSamples\IoTEdgeSamples\PredictiveMaintenance\PredictiveMaintenanceParent\PredictiveMainten
ance and open the file named PredictiveMaintenance.sln. This is the overall solution file for the project. In the
Visual Studio tree view there should be two main sections loaded. One called PredictiveMaintenance and
another named TelemetryData.

11.4 Create a Container Registry in Azure
In the Azure portal search for container registries and open it. Click on Create and fill in the basic details on
the page such as resource group and the registry name. Click review and create to finish.

Install the Azure CLI on the same system as Visual Studio and use Powershell to verify you can login to the
registry. The login syntax in Powershell is: az acr login -n <nameOfRegistry> -u <username> -p <password>
The login credentials can be found under the Access keys section of the container registry. Once the
workstation is logged in, Visual Studio will be able to access it seamlessly for the next step below.

11.5 Edit the code and push the build to Azure
The code is mostly usable as-is from GitHub, with only one file that needs editing. The file is under Telemetry
data, named module.json, and has a line that specifies the container registry. The existing file has a container
registry name Microsoft was using. The line to edit is line 5 as shown below, and the part that needs updating
is highlighted.

Figure 11 Editing the module.json file container registry name

18 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Replace the highlighted part with the name of your container registry. This tells Visual Studio where to upload
the image. Note that it puts it in the registry and a subfolder named Telemetrydata. Save the file.

At this point the solution can be built and pushed to the Azure container registry. In the Visual Studio solution
explorer tree, right click on PredictiveMaintenance and select Build and push IoT Edge module as shown
below. Wait for it to finish and verify the output panel is without errors.

Figure 12 Build and Push IoT Edge Module in Visual Studio

11.6 Deploy the simulator module to the IoT Edge device
Deploying the module is done just like any other IoT Edge Hub module. In the Azure portal, go to your IoT
Hub, and select the IoT Edge device. From the Set Modules blade, enter the container registry information at
the top of the page, shown below. Then select Add, and choose IoT Edge Module.

Figure 13 Enter Container Registry information and credentials

19 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Enter a name and add the URI which is the container registry location plus the file name. Copy what is in the
screen below except replace the first part with whatever name was used for your container registry.

Figure 14 Adding new IoT Edge module details

Set desired state to running, no other settings are needed at this point. Click Add to finish. The module should
show as running in the IoT Edge device’s summary of modules, as shown below.

Figure 15 New IoT Edge module status of running

20 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

11.7 Create the database for the simulator data
Microsoft provides a SQL script to create the database for storing the streaming data. The script is in the
GitHub repository, under SQLEdgeSamples\IoTEdgeSamples\PredictiveMaintenance\deployment scripts.
Look for the script file named Machine_Telemetry_Database_Objects.sql.

1. Connect to the Azure SQL Edge server using Azure Data Studio (ADS). For ADS use the format of
server name or IP address,1433 (or whatever your SQL port is). Note that ADS uses a comma not a
semi-colon.

2. There are supporting files that need to be copied to the SQL data directory in the Azure SQL Edge
container. To simplify this, just copy all the files in the deployment scripts folder to the sql data folder
which is /var/opt/mssql/data. Since SQL Edge is a container, copy the files to the Linux host first (the
IoT Edge device) then use the docker cp command to copy into the container. Here is an example:

docker cp /tmpDir/*.* AzureSQLEdge:/var/opt/mssql/data/

3. Load the script into ADS and edit the passwords to match your SQL password. The password related
lines are line 38 and 190 in the script.

4. Finally, run the script to create the database. Keep the script window open, so that the results panel
can be viewed in later steps.

11.8 Add routes to IoT Edge Module
Go back to the IoT Edge module in the Azure portal. Follow the steps below to add a route.

1. Open the module and select Set Modules then click on routes.

2. In the route name box, enter Machine1.

3. In the value box enter the below string exactly. Note that the bold part needs to be changed to
whatever name you gave the module in section 11.6. This is all one continuous string.

FROM /messages/modules/iotusecase1/outputs/Machine1 INTO BrokeredEndpoint
("/modules/AzureSQLEdge/inputs/MachineTelemetry")

4. Leave the priority and time to live boxes at defaults. Click review and create to finish creating the
route.

5. If you want to actually have data for 5 simulated sensors, then repeat the above steps and create four
more routes, each named Machine2,3,4 and 5 and edit the Machine# value in the string on each one.

Note: Be aware that running even one of these simulators will generate a lot of messages between Azure IoT
Hub and the IoT Edge Device and modules. If using the free tier for IoT message flow, it could exceed the free
tier daily limits. If it exceeds the limit, Azure will shut down the IoT hub.

To avoid exceeding the message limits, stop the IoT Edge modules on the IoT Edge Device when you aren’t
using it. Stop it by running this command:

Sudo systemctl stop iotedge

21 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

11.9 Verify streaming data flow and analyze results
After the route is added, the simulator data will be sending streaming data to the SQL Edge database. The
data can be viewed in the results tab of the SQL script in Azure Data Studio.

The data messages can also be viewed in the IoT edge module logs. Use this command on the IoT Edge
device to view the data being generated by the sensors.

sudo docker logs -f AzureSqlEdge --tail 100

11.10 Data Retention settings
Azure SQL Edge administrators can set data retention policies on a SQL Edge database and the tables. After
the retention policy is set background tasks purge old data. The setting is included in the sample database
script Microsoft provided. The command below enables it on the database.

ALTER DATABASE [PredictiveMaintenance] SET DATA_RETENTION ON

This command example sets it on the specific table.

 Create Table [Example]

 (

 [timestamp] datetime,

 var_machineid smallint,

 var_voltate numeric(11,6),

 var_error2 numeric(11,6)

)With (DATA_DELETION = On (FILTER_COLUMN = [timestamp], RETENTION_PERIOD = 1 day))

22 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

12 Appendix: Bill of Materials
This appendix features the Bill of Materials (BOMs) for the SE350 server. The BOM listed is not meant to be
exhaustive and must always be confirmed with the configuration tools and customer requirements.

12.1 ThinkSystem SE350 for Azure SQL Edge BOM

Part number Product Description Qty
7D1XCTO1WW Node : ThinkSystem SE350 - 3yr Warranty 1
B6EQ ThinkSystem SE350 Edge Server Chassis 1
B6F4 ThinkSystem SE350 10GbE SFP+ 2-Port, 10/100/1GbE RJ45 2-Port Intel i350 1
B8ZR Standard Shock & Vibration (15G & 0.21Grms) 1
B8ZT Operational Temperature 0-45C 1
BFYB Operating mode selection for: "Maximum Performance Mode" 1
B93A ThinkSystem SE350 Edge Server Intel Xeon D-2143IT 8C 65W 2.20 GHz 1
AUNC ThinkSystem 16GB TruDDR4 2666 MHz (2Rx8 1.2V) RDIMM 4
B6FF ThinkSystem SE350 M.2 SATA/NVMe 4-bay Data Drive Enablement Kit 1
5977 Select Storage devices - no configured RAID required 1
AVUX On Board SATA AHCI Mode 1
B75A ThinkSystem M.2 800GB Industrial A600i SATA SSD 4
B6FH ThinkSystem SE350 M.2 Adapter SATA Cable 1
B88P ThinkSystem SE350 M.2 Mirroring Enablement Kit 1
B758 ThinkSystem M.2 120GB Industrial A600i SATA SSD 2
B6FE ThinkSystem SE350 M.2 Riser Cage Assembly 1
B6FU ThinkSystem SE350 - 12V PDM 1
B6FW ThinkSystem SE350 240W AC Adapter 2
6311 2.8m, 10A/100-250V, C13 to IEC 320-C14 Rack Power Cable 2
B6KT ThinkSystem SE350 - Mini USB to USB Type A (F) Console Cable 1
B755 Desktop Mode 1
B6Q3 ThinkSystem SE350 Rubber Feet 1
AUPW ThinkSystem XClarity Controller Standard to Enterprise Upgrade 1
B173 Companion Part for XClarity Controller Standard to Enterprise Upgrade in Factory 1
5PS7A34998 Premier Essential - 3Yr 24x7 4Hr Resp + YDYD SE350 1
5641PX3 XClarity Pro, Per Endpoint w/3 Yr SW S&S 1
1340 Lenovo XClarity Pro, Per Managed Endpoint w/3 Yr SW S&S 1

23 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Conclusion
By deploying the Lenovo ThinkSystem SE350 edge server + Microsoft Azure SQL edge solution, you can
quickly solve your database processing needs at the edge with high performance and resiliency at a
reasonably low cost. This solution can also be implemented on ThinkAgile MX1020 integrated systems or
ThinkAgile MX1021 certified nodes for high availability.

Change history

Changes in the December 1, 2021 update (version 1.1):

• Added use case for Azure SQL Edge on Lenovo SE350

• Added a section on adding data volumes to SQL Edge containers

Resources
For more information about the topics that are described in this document, see the following resources:

• IoT Edge on RHEL 7.x. Blog posting by Microsoft IoT Edge team.
http://busbyland.com/install-iot-edge-on-red-hat-enterprise-linux-rhel-7-x/

• Azure SQL Edge documentation main page
https://docs.microsoft.com/en-us/azure/azure-sql-edge/overview

• Azure IoT Edge device deployment - via Azure

https://docs.microsoft.com/en-us/azure/azure-sql-edge/deploy-portal

• Azure IoT Edge device deployment - via Docker
https://docs.microsoft.com/en-us/azure/azure-sql-edge/disconnected-deployment

• Lenovo ThinkSystem SE350 product overview
https://www.lenovo.com/us/en/c/data-center/servers/edge

• Hammerdb toolkit

https://www.hammerdb.com/

http://busbyland.com/install-iot-edge-on-red-hat-enterprise-linux-rhel-7-x/
https://docs.microsoft.com/en-us/azure/azure-sql-edge/overview
https://docs.microsoft.com/en-us/azure/azure-sql-edge/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-sql-edge/disconnected-deployment
https://www.lenovo.com/us/en/c/data-center/servers/edge
https://www.hammerdb.com/

24 Microsoft Azure SQL Edge with Lenovo ThinkSystem SE350 Solution Guide

Trademarks and special notices
© Copyright Lenovo 2021.

References in this document to Lenovo products or services do not imply that Lenovo intends to make them
available in every country.

The following terms are trademarks of Lenovo in the United States, other countries, or both:

Lenovo®
ThinkSystem
TruDDR4
XClarity®

The following terms are trademarks of other companies:

Intel® and Xeon® are trademarks of Intel Corporation or its subsidiaries.

Linux® is the trademark of Linus Torvalds in the U.S. and other countries.

Azure®, Microsoft®, and SQL Server® are trademarks of Microsoft Corporation in the United States, other
countries, or both.

TPC and TPC-C are trademarks of Transaction Processing Performance Council.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used Lenovo
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-Lenovo products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of such
products by Lenovo. Sources for non-Lenovo list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. Lenovo has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims related
to non-Lenovo products. Questions on the capability of non-Lenovo products should be addressed to the
supplier of those products.

All statements regarding Lenovo future direction and intent are subject to change or withdrawal without notice
and represent goals and objectives only. Contact your local Lenovo office or Lenovo authorized reseller for the
full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive
statement of a commitment to specific levels of performance, function or delivery schedules with respect to
any future products. Such commitments are only made in Lenovo product announcements. The information is
presented here to communicate Lenovo’s current investment and development activities as a good faith effort
to help with our customers' future planning.

Performance is based on measurements and projections using standard Lenovo benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the
storage configuration, and the workload processed. Therefore, no assurance can be given that an individual
user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

Any references in this information to non-Lenovo websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this Lenovo product and use of those websites is at your own risk.

	1 Introduction
	2 Business value
	3 Architectural overview
	4 Deployment prerequisites
	5 IoT Edge device setup
	5.1 Create an IoT Hub in Azure
	5.2 Install Moby Engine prerequisites on edge device
	5.3 Install Moby Engine
	5.4 Install the IoT Edge components
	5.5 Register the device with Azure IoTHub
	5.6 Configure IoT Hub connection

	6 Azure SQL Edge - Azure IoT Edge method
	7 Azure SQL Edge - Docker method
	8 Connecting to the SQL Edge container
	8.1 Connect to the container CLI
	8.2 Connect to the SQL instance with SSMS

	9 Add data volumes to SQL Edge container
	10 Performance Data
	11 Sample Use Case - IoT streaming data
	11.1 Download the code
	11.2 Prepare Visual Studio for Azure IoT projects
	11.3 Load the project file in Visual Studio
	11.4 Create a Container Registry in Azure
	11.5 Edit the code and push the build to Azure
	11.6 Deploy the simulator module to the IoT Edge device
	11.7 Create the database for the simulator data
	11.8 Add routes to IoT Edge Module
	11.9 Verify streaming data flow and analyze results
	11.10 Data Retention settings

	12 Appendix: Bill of Materials
	12.1 ThinkSystem SE350 for Azure SQL Edge BOM

	Conclusion
	Change history
	Resources

