
Implementing AI Workloads using NVIDIA GPUs on
ThinkSystem Servers
Planning / Implementation

Setting up a server with NVIDIA GPUs to run AI machine learning and inference workloads is a non-trivial
process, especially if this is your first time to do this. There are compatibility issues need to consider and pitfalls
need to avoid.

This paper describes the detailed process starting with hardware and firmware setup and concluding with the AI
framework deployment. This paper is suitable for laboratory engineers or anyone who needs to know the full
process of setting up the server hardware and prepare the AI software to run on the server.

Figure 1. The ThinkSystem SD650-N V3 server tray with two processors (right) and four NVIDIA H100 SXM5
GPUs (left)

For our lab enviroinment, we are using a Lenovo ThinkSystem SD650-N V3 configured with NVIDIA H100 GPUs.
For information on these products, refer to related Lenovo and NVIDIA web pages:

Lenovo ThinkSystem SD650-N V3:
Datasheet: https://lenovopress.lenovo.com/datasheet/ds0174
Product Guide: https://lenovopress.lenovo.com/lp1834

NVIDIA H100 Tensor Core GPU Architecture
https://resources.nvidia.com/en-us-tensor-core

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 1

https://lenovopress.lenovo.com/assets/images/LP1834/SD650-N V3 front angled.jpg
https://lenovopress.lenovo.com/datasheet/ds0174
https://lenovopress.lenovo.com/lp1834
https://resources.nvidia.com/en-us-tensor-core
https://lenovopress.lenovo.com/updatecheck/LP1928/e6b5deadeca2c006c9b3ed5bda2a9188

Architecture
In this section, we introduce the architecture of the Lenovo ThinkSystem SD650-N V3 and the NVIDIA H100
configuration from the hardware and software perspective.

From the hardware perspective, we describe the high-level architecture of the Lenovo ThinkSystem SD650-N V3
and NVIDIA H100 and explain how the computing node and GPU node are physically connected and
communicating to each other.

From the software perspective, we describe briefly about the full software stack from NVIDIA and other
organization, from firmware, driver, Docker engine and CUDA toolkit, AI application framework container and
then Jupyter Notebook, etc. The details for setting up and running all the required software packages will be
discussed in the next sections.

Topics in this section:

Hardware perspective
Software perspective

Hardware perspective
Lenovo ThinkSystem SD650-N V3 is a 1U water-cool system, consisting of half-width Intel Xeon Scalable
computing node on the right and half-width NVIDIA H100 GPU node on the left. It’s installed into the 6U DW612s
chassis, and furthermore, up to six SD650-N V3 server trays can be installed in the DW612S 6U enclosure.

Figure 2. Lenovo ThinkSystem DW612S 6U enclosure

H100 is NVIDIA’s 9th-generation data center GPU designed to deliver an order-of-magnitude performance leap
for large-scale AI and HPC over NVIDIA’s prior generation NVIDIA A100 Tensor Core GPU. It is designed based
on the NVIDIA Hopper GPU architecture. The figure below shows the NVIDIA H100 GPU on a SXM5 Module.

Figure 3. NVIDIA H100 GPU on the SXM5 Module

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 2

https://lenovopress.lenovo.com/assets/images/LP1928/DWC chassis with SD650-N V3 Lyon nodes_front angled left.jpg
https://lenovopress.lenovo.com/assets/images/LP1928/3-Nvidia H100 GPU.png

Each NVIDIA H100 GPU node on the left side of ThinkSystem SD650-N V3 server tray contains four SXM5
Modules. In the SD650-N V3 (Figure 1), the Intel Xeon computing node is located on the right of the server tray
and the NVIDIA H100 GPUs are on the left of the server tray. The computing node and GPUs are inter-
connected with four PCIe 5.0 x16 cables, as shown in the figure below.

Figure 4. Inter-connections between Intel Xeon computing node and NVIDIA H100 GPU node

Software perspective
From the software perspective, the software stack required for running an AI application (running on NVIDIA
GPUs), for training or inference, will include at least the following software packages:

NVIDIA GPU Firmware
The NVIDIA H100 SXM5 GPU modules are located behind the NVIDIA ConnectX-7 chips and are
indirectly connected to CPU, as shown in figure 4. The ConnectX-7 firmware helps to discover, initialize,
and enumerate the GPU modules correctly in the PCIe configuration space at the system boot time, and
after this, the GPU modules will show up on the PCI-E bus.

NVIDIA GPU OS Kernel Space CUDA driver
NVIDIA GPU device driver (nvidia.ko) is the OS kernel-mode device driver for the NVIDIA GPUs.

NVIDIA GPU (user mode) CUDA Toolkit
User-mode SDK is used to build CUDA applications. The package also includes useful applications to
check the GPU status (nvidia-smi), and user-mode driver (libcuda.so) used to run CUDA
applications.

Docker Engine
As there exist several deep learning libraries and deep learning frameworks which different users can
simultaneously utilize in the same server, as well as complex dependencies of these frameworks on the
libraries and drivers, it is strongly recommended to use docker-container technology to separate the user
applications and to decouple the complex dependencies on the underlying hardware. As such, installing
docker engine on the GPU server usually is necessary and this avoids the incompatibilities in the future.

NVIDIA CUDA Container Toolkit
The NVIDIA Container Toolkit enables users to build and run GPU-accelerated containers. The toolkit
includes a container runtime library and utilities to automatically configure Docker Engine and containers
to leverage NVIDIA GPUs.

AI Application Container
An AI application container comes with all the dependent system libraries, software packages,
configuration settings and even specific workloads for that specific application purpose. This makes the
deployment and running of a specific application from one computing environment to another very quick
and reliable. NVIDIA and other companies as well as several organizations provide AI application
container images for public use, which can accelerate the development and deployment conveniently.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 3

https://lenovopress.lenovo.com/assets/images/LP1928/4-Interconnects.png

Jupyter Notebook
This software package is optional, but it provides convenient web-based interactive development
environment for notebooks, code, and data development, so it is highly recommended to also install this
package:

In view of the complexity of the above software stacks, NVIDIA provides the necessary software packages
supporting the AI and data science related workloads that will be running on NVIDIA GPUs. The figure below
illustrates the software packages.

Figure 5. NVIDIA provides software packages and their relations (nvidia.com)

For an overview of NVIDIA ’s software packages, please refer to the following NVIDIA page:
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html

The table below summarizes the purpose of each software package.

Table 1. Hardware and software layer objects and their purpose

Layer Object Purpose Description
Container Application

Container
A container is a containerized application that runs on top of the Docker engine which
provides a computing environment that is separate reliably from other applications.
Furthermore, application deployment is significantly faster compared to traditional methods,
as we no longer need to install all dependent libraries or perform necessary configurations;
they are all included in the container image.

CUDA
Container
Toolkit

NVIDIA CUDA
Container
Toolkit

It provides the runtime library to access the Nvidia GPU computing service in the docker-
container environment

Docker Docker
Engine

It supports the execution and separation of containers.
The docker technology provides application specific user space that contains all the
dependent system libraries, software packages, configuration settings and specific
workloads for a specific application. This makes deployment and running of a specific
application from one computing environment to another very quick and reliable.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 4

https://lenovopress.lenovo.com/assets/images/LP1928/5-NVIDIA Container Toolkit.png
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html

(User
mode)
CUDA
Toolkit

NVIDIA
libraries,
runtime and
tools.

User-mode SDK is used to build CUDA applications.
The package also includes useful applications to check the GPU status: nvidia-smi and
user-mode driver: libcuda.so

OS
Kernel
Space
CUDA
driver

NVIDIA GPU
Device Driver

OS Device driver for the NVIDIA GPU: nvidia.ko

Firmware NVIDIA GPU
Firmware

Firmware to initialize and enumerate the NVIDIA GPUs

Hardware NVIDIA GPUs
and Lenovo
ThinkSystem
servers with
NVIDIA GPUs

Physical devices

Layer Object Purpose Description

Setting up the required software packages
As briefly described in the Architecture section, the AI Workload requires a set of software packages:

GPU firmware
GPU driver
Docker engine
CUDA container toolkit
AI application framework container
Jupyter Notebook (optional)

This section will provide the details for setting up all these software packages. Though the Jupyter Notebook is
optional, we will also install it, as it provides a convenient web-based interactive development environment,
which is useful and common in the AI or data science software development area.

Topics in this section:

1. Disable the nouveau video driver
2. Update device firmware
3. Install the NVIDIA GPU driver and the full CUDA toolkit
4. Install Docker Engine on Ubuntu OS
5. Install NVIDIA CUDA Container Toolkit
6. Install AI Application Container and Jupyter Notebook

1. Disable the nouveau video driver
The server should be installed with Ubuntu 22.04 server OS with HWE kernel. We do not go into the OS
installation details here.

Detailed information about the Ubuntu server OS can be found at this page:
https://ubuntu.com/server

If you meet any issue (such as no screen output) when installing the OS, it is possible the OS’ native graphic
driver nouveau is incompatible with the latest NVIDIA GPU and is causing the problem. If so, nouveau needs to
be blacklisted before the OS installation and during the GPU driver installation.

Blacklisting the nouveau driver can be done with the following steps:

1. During the OS installation time or boot time, when the GRUB boot menu shows up, move the up or down
key to the HWE kernel, and press ‘e’ to edit the kernel command line, as in the picture below:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 5

https://ubuntu.com/server

Figure 6. Select and edit HWE kernel in the GNU GRUB boot menu

2. Add the following two parameters to the linux kernel command line, as shown in the picture below:

rdblacklist=nouveau nouveau.modeset=0

Figure 7. Add two parameters in the linux kernel command line to blacklist the “nouveau” module

3. Press Ctrl-x or F10 to install or boot the OS
Note that the above operation only takes effect for one OS boot. For permanent effect, we still need to
blacklist nouveau module as in the step below.

4. Disable (blacklist) the nouveau driver when in the OS
If your OS has not installed the dracut package yet, install it first by following the steps below:

$ sudo apt-get update
$ sudo apt-get install dracut

Generate a new initramfs/initrd image without the nouveau driver:

$ sudo mv /boot/initrd.img-$(uname -r) /boot/initrd.img-$(uname -r)-nouveau
$ sudo dracut --force --omit-drivers nouveau /boot/initrd.img-$(uname -r) $
(uname -r)
$ sudo init 3

Now the OS runs into runlevel 3 and nouveau is disabled.

2. Update device firmware
You can go directly to 3. Install the NVIDIA GPU driver and the full CUDA toolkit if no firmware update is
required. We recommend you only upgrade GPU firmware if recommended by Lenovo support.

Both the GPU and ConnectX-7 firmware should have already been updated to the latest versions when the
server was shipped from the Lenovo factory. Verify that the GPUs are listed on the PCIe bus interface, by
checking the XCC (BMC) web GUI from the server, as shown in the figure below.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 6

https://lenovopress.lenovo.com/assets/images/LP1928/6-HWE kernel in the GNU GRUB.png
https://lenovopress.lenovo.com/assets/images/LP1928/7-two parameters in the linux kernel command line.png

Figure 8. NVIDIA H100 GPUs are visible in the PCIe bus interface

If you did not see the correct layout of the GPUs on the PCIe bus interface, you may need to update the
ConnectX-7 firmware for it to correctly manage GPUs.

To update the ConnectX-7 firmware, follow the steps below:

1. download and install mst tool (NVIDIA Firmware Tools, MFT) from the following page:
https://docs.nvidia.com/networking/display/mftv4250/user+manual

2. Download the latest ConnectX-7 firmware for use with the Lenovo ThinkSystem server. In our testing, we
used the following firmware:
fw-ConnectX7-rel-28_38_1002-SN37B23797_SN37B23798_Ax-UEFI-14.31.20-FlexBoot-
3.7.201.signed.bin

3. Install and then start mst with the command:

$ sudo mst start

4. check mst status:

$ sudo mst status

5. You will see 4 mst managed devices associated with CX7 adapters:

/dev/mst/mt4129_pciconf0
/dev/mst/mt4129_pciconf1
/dev/mst/mt4129_pciconf2
/dev/mst/mt4129_pciconf3

6. Flash the firmware for all the four ConnectX-7 devices with the commands below:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 7

https://lenovopress.lenovo.com/assets/images/LP1928/8-pci adapters.png
https://docs.nvidia.com/networking/display/mftv4250/user+manual

$ sudo sudo flint -d /dev/mst/mt4129_pciconf0 -i fw-ConnectX7-rel-28_38_100
2-SN37B23797_SN37B23798_Ax-UEFI-14.31.20-FlexBoot-3.7.201.signed.bin b
$ sudo sudo flint -d /dev/mst/mt4129_pciconf1 -i fw-ConnectX7-rel-28_38_100
2-SN37B23797_SN37B23798_Ax-UEFI-14.31.20-FlexBoot-3.7.201.signed.bin b
$ sudo sudo flint -d /dev/mst/mt4129_pciconf2 -i fw-ConnectX7-rel-28_38_100
2-SN37B23797_SN37B23798_Ax-UEFI-14.31.20-FlexBoot-3.7.201.signed.bin b
$ sudo sudo flint -d /dev/mst/mt4129_pciconf3 -i fw-ConnectX7-rel-28_38_100
2-SN37B23797_SN37B23798_Ax-UEFI-14.31.20-FlexBoot-3.7.201.signed.bin b

7. Reboot the server.

$ sudo init 6

For more information about the NVIDIA device firmware update process, see the following pages:

https://docs.nvidia.com/networking/display/mftv4250/flint+%E2%80%93+firmware+burning+tool

https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/about.html

3. Install the NVIDIA GPU driver and the full CUDA toolkit
The NVIDIA GPU OS kernel space device driver, user space drivers and runtime libraries, tools, utilities and
sample source codes, are all packaged within the NVIDIA GPU CUDA Toolkit. They are the necessary and
integral part of software components for providing the NVIDIA GPU services to the upper layer applications that
run in the OS user space.

Follow the steps below to install the NVIDIA GPU CUDA Toolkit and verify the successful installation:

1. Install gcc (and build-essential) in the OS
We need to install the gcc compiler tool chain first, as it is required during the NVIDIA GPU driver
installation, using the command below to install this package:

$ sudo apt install build-essential

2. Download NVIDIA GPU driver and all related user utilities (nvidia-smi, etc)
To search and download the NVIDIA GPU driver and related user utilities software package, visit the
NVIDIA Driver Downloads site via the link below, and select H100 and the target OS as in figure 9 to
locate the corresponding H100 GPU driver for the target OS, as in figure 10.

https://www.nvidia.com/download/index.aspx

Figure 9. NVIDIA Driver Downloads details

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 8

https://docs.nvidia.com/networking/display/mftv4250/flint+%E2%80%93+firmware+burning+tool
https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/about.html
https://www.nvidia.com/download/index.aspx
https://lenovopress.lenovo.com/assets/images/LP1928/9-NV driver download1.png

Figure 10. A specific NVIDIA Driver version for download

Using the latest version of NVIDIA GPU driver is highly recommended. At the time of writing, the latest
version was v550.54.14, released in February 2024. Download it to a local folder.

3. Switch to text mode console first if not yet in this mode, with the command below:

$ init 3

4. Run the command below to install all the CUDA toolkit:

$ sudo ./NVIDIA-Linux-x86_64-xxx.yyy.zz.run

xxx.yyy.zz is the versioning of the NVIDIA driver, such as 535.104.12 (as shown below). Note that, in
addition to the kernel driver, this toolkit package also includes all the user-mode SDK and utilities, and
executing the above command will install all these components.

5. Run the command below to check if installation is successful:

$ nvidia-smi

If the CUDA toolkit package is installed correctly, the information below for all GPUs will be displayed:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 9

https://lenovopress.lenovo.com/assets/images/LP1928/10-NV driver download2.png

Figure 11. nvidia-smi command output from OS user space

If you want to uninstall this version of driver (for example, before upgrading to a newer driver), simply run:

$ sudo nvidia-uninstall

6. Install the Graphical User Interface (GUI) for Ubuntu 22 server OS
A remote desktop GUI environment will be helpful for remote users to use the GUI based web browser in
the server OS such as the Google Chrome, which will be used with Jupyter Notebook. As such, we will
install the xrdp GUI on the Ubuntu server OS.

To install the GUI for Ubuntu 22 Server OS, using below commands to install xrdp:

$ apt install ubuntu-desktop-minimal -y
$ apt install xrdp -y
$ systemctl status xrdp

Details about the xrdp GUI can be found at the following page:
https://www.layerstack.com/resources/tutorials/How-to-install-Graphical-User-Interface-GUI-for-Ubuntu-
22-Cloud-Servers

4. Install Docker Engine on Ubuntu OS
There are several technologies that provide solutions for running containerized applications on Linux OS, such
as Docker, Artifactory Docker Registry, LXC, Podman, runC, containerd, etc. In this paper, we choose to use
Docker.

To install the Docker engine on the Ubuntu OS, follow the steps below.

1. Set up Docker's apt repository

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 10

https://lenovopress.lenovo.com/assets/images/LP1928/11-nvdia-smi-from-user-space-535_104_12.png
https://www.layerstack.com/resources/tutorials/How-to-install-Graphical-User-Interface-GUI-for-Ubuntu-22-Cloud-Servers

Add Docker's official GPG key:
$ sudo apt-get update
$ sudo apt-get install ca-certificates curl
$ sudo install -m 0755 -d /etc/apt/keyrings
$ sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/
keyrings/docker.asc
$ sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:
$ echo \
 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docke
r.asc] https://download.docker.com/linux/ubuntu \
 $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update

2. Install the Docker packages with the latest version

$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-
plugin docker-compose-plugin

3. Verify that the Docker Engine installation is successful by running the hello-world image

Below command downloads and runs a test container image. It prints a conf
irmation message and exits.
$ sudo docker run hello-world

Figure 12. Hello-world message output from the test container image

Once you see the Hello-world confirmation message, the Docker engine is correctly installed.

For more details about the Docker engine usage, please refer to the Docker web site below:
https://docs.docker.com/engine/install/ubuntu/

For comparisons about docker technologies, refer to:
https://jfrog.com/devops-tools/article/alternatives-to-docker/

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 11

https://lenovopress.lenovo.com/assets/images/LP1928/12-Hello-world message ouput from the test container image.png
https://docs.docker.com/engine/install/ubuntu/
https://jfrog.com/devops-tools/article/alternatives-to-docker/

5. Install NVIDIA CUDA Container Toolkit
The NVIDIA Container Toolkit enables users to build and run GPU-accelerated containers. The toolkit includes a
container runtime library and utilities to automatically configure the Docker Engine to leverage the NVIDIA GPUs
and provide the NVIDIA GPU computing services to the container applications that run in the docker
environment.

Follow the steps below to install this Toolkit and verify the successful installation:

1. Get the GPG key and configure the package repository by below commands:

$ distribution=$(. /etc/os-release;echo IDVERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gp
g --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/li
bnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-too
lkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

2. Install the nvidia-container-toolkit package and its dependencies after updating the package listing:

$ sudo apt-get update
$ sudo apt-get install -y nvidia-container-toolkit

3. Configure the Docker daemon to recognize the NVIDIA Container Runtime:

$ sudo nvidia-ctk runtime configure --runtime=docker

4. Restart the Docker daemon to complete the installation after setting the default runtime:

$ sudo systemctl restart docker

5. Test the setup by running a base CUDA container which runs the nvidia-smi command:

$ sudo docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-
ubuntu20.04 nvidia-smi

Now, you should see the output below:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 12

Figure 13. nvidia-smi command output from container image through the Nvidia CUDA Container Toolkit
Runtime

For more information, see the NVIDIA Container Toolkit Installation Guide:
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/1.12.0/install-guide.html

6. Install AI Application Container and Jupyter Notebook
In this section, we are going to demonstrate how to pull and install a container image for a specific application
purpose.

Theoretically, GPU users can develop an AI or data science application from scratch on their own, but
practically, the time and efforts required can be greatly reduced for development based on the existing open
software resources.

There are a lot of open software resources on websites. One such site is NVIDIA NGC, which hosts a catalog of
GPU-optimized AI software, SDKs, and Jupyter Notebooks, etc. that can greatly help accelerate AI workflows
and offer support through NVIDIA AI Enterprise.

Before accessing NGC, you will need to create an account on the NGC container registry:

1. Go to https://ngc.nvidia.com and in the top-right corner, click Welcome Guest > Sign in/sign up .
2. Enter your email address and click Continue.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 13

https://lenovopress.lenovo.com/assets/images/LP1928/13-nvidia-smi command output from container image.png
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/1.12.0/install-guide.html
https://ngc.nvidia.com

Figure 14. NGC user account registration

3. After entering your email to sign in, you will be brought to the “Create Your Account” page as below. Enter
your account information as necessary.

Figure 15. Create your account on the NGC

4. Enter your profile information and accept the NVIDIA GPU Cloud Terms of Use to activate your NGC
account.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 14

https://lenovopress.lenovo.com/assets/images/LP1928/14-Nvidia-NGC-Setup2.png
https://lenovopress.lenovo.com/assets/images/LP1928/14-2_CreateYourAccount2.png

Figure 16. Enter your profile and accept the terms to activate the NGC account

5. Now sign in again to the NGC sign in website, https://ngc.nvidia.com/signin and click your user account
icon in the top right corner and select “Setup”.

Figure 17. User login and setup

6. Click “Generate Personal Key” from the available options when below page shows up. Be sure to save
the generated key to a secure place for future use.

Figure 18. Generate Personal Key

Now that you have created an NGC account and obtained an NGC API key, you are ready to download (pull) an
NGC TensorFlow container from NVIDIA NGC site and run that container using Docker.

Follow the steps below:

1. Log in to the NGC container registry in a command shell:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 15

https://lenovopress.lenovo.com/assets/images/LP1928/14-3_SetYourProfile.png
https://ngc.nvidia.com/signin
https://lenovopress.lenovo.com/assets/images/LP1928/14-4_Setup-API.png
https://lenovopress.lenovo.com/assets/images/LP1928/14-5_Generate-API-Key.png

$ sudo docker login nvcr.io

2. When prompted for your username, enter the following text (exactly as is):

$oauthtoken

The $oauthtoken username is a special user name that indicates that you will authenticate with an API
key and not a username and password.

3. When prompted for your password, enter your NGC API key (the NGC API key that you just generated).

Username: $oauthtoken
Password: k7cqFTUvKKdiwGsPnWnyQFYGnlAlsCIRmlP67Qxa

4. Go to the NGC containers catalog page, https://ngc.nvidia.com/catalog/containers
5. Search for “TensorFlow” and click the Learn More button in the TensorFlow card as highlighted in the

figure below.

Figure 19. Search for the TensorFlow container image in the NGC Catalog

6. The different versions of TensorFlow container images will be listed under the “Tags” tab of right-hand
side panel of the webpage, as in the figure below. The latest version is recommended since it may fix
some of the known issues in prior versions. A general description about this container image can be
found in the left-hand side panel of the webpage, while more detailed information and suggested further
readings can be found under the “Overview” tab of right-hand side panel.
Click the icon and copy the pull command for the selected version of TensorFlow container image.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 16

https://ngc.nvidia.com/catalog/containers
https://lenovopress.lenovo.com/assets/images/LP1928/15-search-TensorFlow2.png

Figure 20. Copy the pull command for the selected version of TensorFlow container image

7. Paste the pulled command into the command shell to download the selected version of TensorFlow
container image. For our lab testing, we downloaded tensorflow: 24.02-tf2-py3.

$ sudo docker pull nvcr.io/nvidia/tensorflow:24.02-tf2-py3

8. Once the container download is completed, run the code below to start the TensorFlow container:

$ sudo docker run -it --gpus all -p 8888:8888 -v $PWD:/projects --network=h
ost nvcr.io/nvidia/tensorflow:24.02-tf2-py3

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 17

https://lenovopress.lenovo.com/assets/images/LP1928/16-TensorFlowPullCmd2.png

Figure 21. Run the TensorFlow container image

Now we are in the container runtime.

As this container image is not installed with Jupyter, we install and run it within the container, as described in the
following steps:

1. Install Jupyter Lab within the container

$ pip install jupyterlab

Figure 22. Jupyter Lab is installed within the container

2. We are using the matplotlib to plot the pictures in the Jupyter Lab when running the image classification
application, also need to install it with the command below:

$ pip install matplotlib

3. Start the Jupyter Lab server with the following command:

$ jupyter lab --ip=0.0.0.0 --port=8888 --allow-root

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 18

https://lenovopress.lenovo.com/assets/images/LP1928/17-TensorFlow-run.PNG
https://lenovopress.lenovo.com/assets/images/LP1928/18-jupyter-installed.PNG

Figure 23. Jupyter Lab is started within the container

4. Open a browser at the following URL to use graphic web UI with Jupyter Lab, where yourtoken is the
token ID number that is shown when you started Jupyter, as shown in the last line of the preceding figure.
http://localhost:8888/?token=yourtoken

Based on the token ID in the preceding figure, the URL will be:
http://localhost:8888/?token=fea392759af83faddbb0e212c6a7f4a085e0ef941cb58668

The browser loads to the Jupyter Lab application as shown in the figure below.

Figure 24. Jupyter Lab shown in the browser

5. Click on the plus icon to launch a new Python 3 notebook.

In the next section we are going to run an image classification AI application container with the TensorFlow
framework.

Reference:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 19

https://lenovopress.lenovo.com/assets/images/LP1928/19-jupyter-notebook-start.PNG
http://localhost:8888/?token=fea392759af83faddbb0e212c6a7f4a085e0ef941cb58668
https://lenovopress.lenovo.com/assets/images/LP1928/20-jupyter-in-web1.PNG

https://catalog.ngc.nvidia.com/orgs/nvidia/resources/fashion_mnist_tf_example/version/1.0
/files/FashionMNIST%20Notebook.ipynb

For more details about how to get started to pull a container from NGC, refer to the following pages:

https://catalog.ngc.nvidia.com/orgs/nvidia/collections/gettingstarted

https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#pullcontainer

Running the AI Workloads
In the preceding sections, we described how to deploy all necessary software packages for running a typical AI
application container. In this section, we describe running a typical AI application which classifies images of
clothing.

In this section, we use Jupyter Notebook to describe the full process of running “Fashion-MNIST Image
Classification” with TensorFlow, step by step.

1. Import Tensorflow, Keras, numpy and matplotlib

In [1]:
Import Tensorflow and check version
import tensorflow as tf
Import TensorFlow Keras
from tensorflow import keras
#Import numpy
import numpy as np
#Import matplotlib
import matplotlib.pyplot as plt

2. Import and load data set for model training and inference

In [2]:
Import the dataset.
fashion_mnist = keras.datasets.fashion_mnist

In [3]:
Load data set as four numpy arrays:

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.lo
ad_data()

For training the model, we will use train_images and train_labels arrays.
To test the performance of the trained model, we are going to use the tes
t_images and test_labels arrays.

3. Explore the data set

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 20

http://catalog.ngc.nvidia.com/orgs/nvidia/resources/fashion_mnist_tf_example/version/1.0/files/FashionMNIST Notebook.ipynb
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/gettingstarted
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#pullcontainer

In [4]:
print(f'There are {len(train_images)} images in the training set and {len(t
est_images)} images in the testing set.')

Out[4]:
There are 60000 images in the training set and 10000 images in the testing
set.

In [5]:
print(f'There are {len(train_labels)} labels in the training set and {len(t
est_labels)} labels in the test set.')

Out[5]:
There are 60000 labels in the training set and 10000 labels in the test set
.

In [6]:
print(f'The images are {train_images[0][0].size} x {train_images[0][1].size
} NumPy arrays.')

Out[6]:
The images are 28 x 28 NumPy arrays.

In [7]:
The images are labeled with integers ranging from 0 to 9.
train_labels[0:20]

Out[7]:
array([9, 0, 0, 3, 0, 2, 7, 2, 5, 5, 0, 9, 5, 5, 7, 9, 1, 0, 6, 4],
 dtype=uint8)

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 21

In [8]:
label_cloth_dict = {0:'T-shirt/top', 1:'Trouser', 2:'Pullover',
 3:'Dress', 4:'Coat', 5:'Sandal', 6:'Shirt',
 7:'Sneaker', 8:'Bag', 9:'Ankle boot' }

In [9]:
def label_name(x):
 return label_cloth_dict[x]

In [10]:
Let's have a look at one of the images. The following code visualizes the
images using the matplotlib library.

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.show()

Out [10]:

Figure 25. The first image from the training set

In [11]:
Let's look again at the first ten images, but this time with the class na
mes.
plt.figure(figsize=(10,5))
for i in range(10):
 plt.subplot(2,5,i+1)
 plt.xticks([])
 plt.yticks([])
 plt.grid(False)
 plt.imshow(train_images[i], cmap='Blues')
 plt.xlabel(label_name(train_labels[i]))
plt.show()
Out [11]:

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 22

https://lenovopress.lenovo.com/assets/images/LP1928/21-pict-boot.png

Figure 26. The first ten images from the training set with the class names

In [12]:
The pixel values range from 0 to 255.
Let's divide the image arrays by 255 to scale them to the range 0 to 1.

train_images = train_images / 255.0
test_images = test_images / 255.0

4. Build the image classification model

In [13]:
Let's build the model:

simple_model = keras.Sequential([
Flatten two dimansional images into one dimansion 28*28pixles=784pixels.
keras.layers.Flatten(input_shape=(28, 28)),
First dense/ fully connected layer: 128 nodes.
keras.layers.Dense(128, activation='relu'),
Second dense/ fully connected layer: 10 nodes --> Result is a score for e
ach images class.
keras.layers.Dense(10)])

5. Compile the model

In [14]:
Compile the model:
Define loss function, optimizer, and metrics.

simple_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

6. Train the model

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 23

https://lenovopress.lenovo.com/assets/images/LP1928/22-pict-clothings.png

In [15]:
Train the model:
Let's train 15 epochs. After every epoch, training time, loss, and accura
cy will be displayed.

simple_model.fit(train_images, train_labels, epochs=15)

7. Test the model and check the model performance on the test data

In [16]:
Let's see how the model performs on the test data:
test_loss, test_acc = simple_model.evaluate(test_images, test_labels)

Out[16]:
313/313 [==============================] - 0s 542us/step - loss: 0.3482 - a
ccuracy: 0.8836

We successfully trained our first model and used it to make predictions on test data, based on all the prior
installed software packages.

For more information
For more information see these resources:

NVIDIA CUDA driver:
https://docs.nvidia.com/datacenter/tesla/index.html#nvidia-driver-documentation
https://docs.nvidia.com/datacenter/tesla/drivers/index.html
NVIDIA Container Toolkit:
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/
Containers For Deep Learning Frameworks User Guide:
https://docs.nvidia.com/deeplearning/frameworks/user-guide/#pullcontainer
NVIDIA NGC Catalog:
https://ngc.nvidia.com/
https://docs.nvidia.com/ngc/index.html#primary-documentation

Author
Kelvin Shieh is the OS Development Technical Lead for the Lenovo Infrastructure Solutions Group, based in
Taipei, Taiwan.

Related product families
Product families related to this document are the following:

Artificial Intelligence
GPU adapters
ThinkSystem SD650-N V3 Server

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 24

https://docs.nvidia.com/datacenter/tesla/index.html#nvidia-driver-documentation
https://docs.nvidia.com/datacenter/tesla/drivers/index.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/
https://docs.nvidia.com/deeplearning/frameworks/user-guide/#pullcontainer
https://ngc.nvidia.com/
https://docs.nvidia.com/ngc/index.html#primary-documentation
https://lenovopress.lenovo.com/software/ai
https://lenovopress.lenovo.com/servers/options/gpu
https://lenovopress.lenovo.com/servers/thinksystem-v3/sd650-n-v3

Notices
Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your local
Lenovo representative for information on the products and services currently available in your area. Any reference to a
Lenovo product, program, or service is not intended to state or imply that only that Lenovo product, program, or service
may be used. Any functionally equivalent product, program, or service that does not infringe any Lenovo intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any other
product, program, or service. Lenovo may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

Lenovo (United States), Inc.
8001 Development Drive
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without
notice.

The products described in this document are not intended for use in implantation or other life support applications where
malfunction may result in injury or death to persons. The information contained in this document does not affect or change
Lenovo product specifications or warranties. Nothing in this document shall operate as an express or implied license or
indemnity under the intellectual property rights of Lenovo or third parties. All information contained in this document was
obtained in specific environments and is presented as an illustration. The result obtained in other operating environments
may vary. Lenovo may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this
Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was determined
in a controlled environment. Therefore, the result obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific
environment.

© Copyright Lenovo 2024. All rights reserved.

This document, LP1928, was created or updated on April 17, 2024.

Send us your comments in one of the following ways:

Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP1928
Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP1928.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 25

https://lenovopress.lenovo.com/LP1928
mailto:comments@lenovopress.com?subject=Feedback for LP1928
https://lenovopress.lenovo.com/LP1928

Trademarks
Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other
countries, or both. A current list of Lenovo trademarks is available on the Web at
https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®
ThinkSystem®

The following terms are trademarks of other companies:

Intel® and Xeon® are trademarks of Intel Corporation or its subsidiaries.

Linux® is the trademark of Linus Torvalds in the U.S. and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers 26

https://www.lenovo.com/us/en/legal/copytrade/

	Implementing AI Workloads using NVIDIA GPUs on ThinkSystem Servers Planning / Implementation
	Architecture
	Hardware perspective
	Software perspective

	Setting up the required software packages
	1. Disable the nouveau video driver
	2. Update device firmware
	3. Install the NVIDIA GPU driver and the full CUDA toolkit
	4. Install Docker Engine on Ubuntu OS
	5. Install NVIDIA CUDA Container Toolkit
	6. Install AI Application Container and Jupyter Notebook

	Running the AI Workloads
	For more information
	Author
	Related product families
	Notices
	Trademarks

