
Making LLMs Work for Enterprise Part 2: RAG Fine-
Tuning Dataset Creation
Planning / Implementation

Large language models (LLMs) can perform useful tasks such as question answering and following
instructions to generate text. Context retrieval is a popular enhancement for LLM applications: a user gives
an input, the application retrieves relevant context, and the user input, along with the context are passed to
the LLM for informed output generation. Retrieval augmented generation (RAG) improves the accuracy,
diversity, and specificity of LLM generated responses by retrieving relevant context and adding it to the
prompt (Lewis et al., 2021). However, for enterprise applications, using RAG with an open source LLM may
not suffice. Using open source, instruction-fine-tuned LLMs, such as the Llama 2 Chat family, cedes the
ability to tune the model output to the specific use case. Depending on the use case, enterprise teams
developing RAG applications may find that open-source model responses are too verbose, prone to
hallucination, or do not have the desired tone or level of detail. Fine-tuning an LLM for the specific RAG
application can resolve these issues (Zhang et al., 2024).

In many cases, plenty of company-specific data–for example, existing documents or webpages–is available
to serve as context in a RAG application. But the questions used for fine-tuning should be the types of
questions expected from the end users of the application, and the answers should demonstrate the level of
detail, tone, length, and diversity with which the application should respond.

In this article, we will discuss the steps for creating a dataset for fine-tuning a LLM to be used in a RAG
application that answers questions about a company-specific knowledge base. It is unlikely that hundreds
or thousands of context-question-answer examples that align with the needs of the LLM application are
readily available. However, using a small set of high-quality human-created examples, we can use a high-
performing LLM to generate questions and answers that relate to the available context documents. This
process will augment the dataset while maintaining the question-and-answer patterns of the original
human-created examples. The size of the dataset can quickly scale to thousands of examples.

The deliverables created by following the steps in this article are:

User input scope definition
Collection of cleaned document chunks relevant to scope
50 randomly selected document chunks, each with a manually created question-and-answer pair
Several thousand LLM-generated (plus 20 manually created) document chunk-question-answer sets
Combined dataset of positive and negative RAG question and answer examples

Requirements
The high-level requirements are as follows:

Hardware: Server with at least 1x A100 80GB
Software: NVIDIA Triton Inference Server

Process overview
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Process overview
The process is as follows:

1. Define Scope
2. Collect, Clean, and Chunk Text Documents
3. Manually Create Examples
4. Generate a Large Q&A Dataset with Few-Shot Prompting
5. Create a Positive RAG Dataset
6. Create a Negative RAG Dataset
7. Combine Positive and Negative RAG Datasets

1. Define Scope
In a perfect RAG application, a user inputs an instruction, and a system retrieves the most relevant
document chunk available to help complete the task. The document chunk and question are inserted into a
prompt template, and that prompt is then passed to an LLM, which outputs an accurate response to the
instruction, using information from the context chunk.

First, the scope of user questions that the application should be able to respond to needs to be defined.
Defining the scope as consisting of certain question types–for example, “ask for product specifications,”
“ask for product descriptions,” and “ask for product recommendations”–may be helpful. It is also important
to consider the specificity and complexity of user questions in the scope definition. While manually creating
this small dataset, make sure the questions cover the entire scope you have defined for your application.

Deliverable: user input scope definition

2. Collect, Clean, and Chunk Text Documents
A fundamental piece of a RAG application is the document collection. Given a user input, relevant
document chunks will be retrieved from the collection and passed, along with the input, to the LLM. To
create this document collection, gather the documents that contain the information necessary to answer
user questions within the application scope.

The document text should be parsed and cleaned. These steps depend on the document file types and the
format of the text. However, in most cases, removing consecutive whitespaces, non-ascii characters, and
boilerplate such as headers and footers is helpful. Also consider how text elements such as tables in your
documents will be structured - converting tables to markdown can improve readability for LLMs.

Finally, break the documents into small chunks, such that several can fit into the context window. Typically,
a good chunk size ranges from a single sentence to a small paragraph. Consider the structure of the
documents when chunking, so sentences, paragraphs, and elements like tables are not kept in-tact as
much as possible. The LLM framework LangChain has a collection of text splitter classes that can help in
this step.

Deliverable: collection of cleaned document chunks relevant to scope

3. Manually Create Examples
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3. Manually Create Examples
We randomly select 50 unique document chunks from the entire collection. Then, for each of those
randomly selected document chunks, we write a question that fits into the scope, for which the information
in the document chunk can inform the answer. (If no in-scope question can be answered by the context
document, write a value such as “[NOT IN SCOPE]” for both the answer and question.) Next, we write an
answer to the question, referencing the document chunk, exactly as we would desire the application to
answer the end user asking the question.

The following figure shows an example using a document chunk from Lenovo Press.

Figure 1. Document chunk from Lenovo Press

The randomly selected document chunk contains information about the weight of an iDataPlex rack. If we
are building a RAG application to answer questions about technical specifications found on Lenovo Press,
an in-scope question is, “How much does an iDataPlex rack weigh?” Lastly, we write the ideal response to
that question, using the information found in the document chunk.

After writing question and answer pairs for 50 randomly selected document chunks, we are ready to start
using an LLM to augment the dataset.

Deliverable: 50 randomly selected document chunks, each with a manually created question-and-answer
pair

4. Generate a Large Q&A Dataset with Few-Shot Prompting
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4. Generate a Large Q&A Dataset with Few-Shot Prompting
The LLM used for dataset augmentation should be a high performing general purpose LLM. It is important
to review the LLM’s license to check that it allows for commercial use and allows for its outputs to be used
to train another LLM. Llama 2 13B, for example, is a high performing model that can be inferenced on a
single A100 80GB. It is commercially licensed and, although in general its responses cannot be used to
train another AI model, the license states that using the outputs to further train a Llama 2 family model is
allowed.

Low-Rank Adaptation (LoRA) fine-tuning can yield high performing task specific LLMs with just hundreds or
thousands of high-quality training examples. A high performing LLM like Llama 2 13B can capture the intent
of few shot examples and generate many more examples that follow the same pattern at scale. This
process can quickly augment our dataset, but the quality of data is likely to be lower than it would be if all
the examples were made manually. A larger dataset can help the fine-tuned model distill the desired
patterns. Therefore, it is best to yield a dataset of several thousand examples.

The strategy of few-shot prompting involves providing pairs of input and the desired model output, then
appending the unlabeled input to which the model will respond. Ideally the LLM will generate an output
following the pattern of the prior examples. The prompts should follow a clear format to instruct the LLM to
generate the next output.

Figure 2 shows an example format for few-shot prompting the LLM to generate a question-and-answer pair
for a given document chunk text.

Prompt
Few-Shot Examples (n times) <START>

<CONTEXT> Excerpt from {file name}: {document chunk text}
<QUESTION> {question}
<ANSWER> {answer}
<END>

Target Context <START>
<CONTEXT> Excerpt from {file name}: {document chunk text}
<QUESTION>

Generated Output
Target Question & Answer {question}

<ANSWER> {answer}
<END>

Figure 2. A few-shot prompt includes n input-output pairs, followed by the target input. The model’s
generated response ideally will follow the pattern of the examples given in the prompt.

Details on few-shot implementation. The more examples you can provide in the prompt, the more likely
the LLM will be able to generalize the pattern of your examples. Make sure at least two full examples fit into
the context window. If not, the chunk size should be decreased. If n examples fit into your prompt, n unique
examples should be randomly selected from the manually created dataset and added to the prompt in
random order. Random selection and ordering will help the augmented dataset generalize the patterns of
the manually created dataset.

Deliverable: several thousand LLM-generated (plus 20 manually created) document chunk-question-
answer sets

5. Create a Positive RAG Dataset
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5. Create a Positive RAG Dataset
The first major component of a RAG Q&A application will retrieve document chunks that, ideally, are
relevant to the user’s question. These document chunks, along with the question, are combined into a
prompt that is passed to the second major component of the application, the LLM inference. The LLM’s job
is to determine if any of the prompt’s document chunks contain the answer to the question, and, if they do,
use that information to generate an accurate answer.

With a large collection of document chunks and a dataset of several thousand document chunk-question-
answer sets, we can train an LLM to perform this job. However, first the data must be arranged into the
format matching that of the RAG application: an input (prompt) containing document chunks and a
question, paired with an output (generation) answering the question using information from the chunks.

For each of the several thousand document chunk-question-answer sets previously created, we will create
a RAG training example by following this process:

1. Randomly select the total number of document chunks to include in the prompt (ranging from 1 to
one fewer than the maximum number of chunks that fit into the to-be-fine-tuned LLM’s context
window)

2. Out of the total number of document chunks, randomly select the index for the relevant document
chunk. For example, if the total number of document chunks is 4, the single relevant document
chunk could be the first, second, third, or fourth document chunk in the prompt; if the total number of
document chunks is 1, the single relevant document chunk will be the only document chunk included
in the prompt.

3. Create the RAG prompt by concatenating document chunks that are randomly selected from the
entire collection of document chunks (and are therefore irrelevant to the question). Insert the single
relevant document chunk into its selected position.

4. Append the question to the end of the prompt.
5. Save the example as a JSON object with the prompt as the value for the “input” key, and the answer

to the question as the value for the “output” key.

Deliverable: several thousand prompts (containing a question, preceded by one relevant document chunk
and possibly irrelevant document chunks) paired with answers

6. Create a Negative RAG Dataset
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6. Create a Negative RAG Dataset
Sometimes, the retrieval component of a RAG application may fail to retrieve a relevant document chunk
for the user’s question. A common flaw in RAG applications that use chat-fine-tuned models, such as the
Llama 2 chat family, is that these LLMs tend to hallucinate inaccurate answers to questions when relevant
context is not provided. LLM hallucination can lead to inaccurate responses and deteriorate users’ trust in
the application.

Including unanswerable examples with appropriate outputs in the fine-tuning dataset can help prevent LLM
hallucination, making the application more trustworthy. The positive RAG dataset created in the prior
section is used to train an LLM how to extract answers to questions when relevant context is given. Now we
will make a negative RAG dataset, which will be used to train an LLM how to respond when relevant
information is not available for the given question.

First, we create a collection of many different responses the LLM could give when it does not know the
answer. We can manually create the first several and save them to a text file, separated by newlines. Here
is an example:

I'm sorry, I wasn't able to find relevant information to answer that questio
n.
Sorry, I don't know the answer to that. Try asking another question.
I tried my best, but I wasn't able to find any information about that. Sorry
!
I wasn't able to find any information for your question. Maybe try rephrasin
g it.
Sorry! I don't know the answer to that. Do you want to try another question?

By randomly selecting and sorting these manually created examples, we can create prompts to pass to a
LLM. The LLM should follow the pattern and generate new lines that follow the same pattern. Keep
generating new responses that follow this pattern until there are several hundred unique responses.
Manually check the resulting collection to be sure the generated responses properly follow the pattern as
desired.

The next step in making a negative RAG dataset is similar to the positive RAG dataset creation process,
with some important differences.

For each of the several thousand document chunk-question-answer sets previously created, we will create
a RAG negative training example by following this process:

1. Randomly select the total number of document chunks to include in the prompt (ranging from 1 to
one fewer than the maximum number of chunks that fit into the to-be-fine-tuned LLM’s context
window)

2. Create the RAG prompt by concatenating document chunks that are randomly selected from the
entire collection of document chunks (and are therefore irrelevant to the question). Only use
randomly selected, irrelevant document chunks; do not use the relevant document chunk in the
prompt.

3. Append the question to the end of the prompt.
4. Save the example as a JSON object with the prompt as the value for the “input” key. Randomly

select a negative response from the generated collection and save it as the value for the “output”
key in the JSON object.

Deliverable: Several thousand prompts (containing a question, one-to-multiple irrelevant document
chunks) paired with negative (i.e., “I don’t know,” and similar) responses

7. Combine Positive and Negative RAG Datasets
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7. Combine Positive and Negative RAG Datasets
The final step in generating a dataset for RAG Q&A fine-tuning is to combine the positive and negative
datasets. The ratio of positive-to-negative examples in the training dataset should be high, since positive
examples contain the important pattern of extracting an answer from the provided context. Therefore, we
use all the positive examples in the final dataset, but only use enough negative examples so they make up
ten percent of the total dataset. If LLM hallucination is too common after the initial fine-tune, we can further
fine-tune the LLM with a larger percentage of negative examples.

Deliverable: Combined dataset of positive and negative RAG question and answer examples

Conclusion
By following this process, we have defined the scope of user inputs the application should handle and
created a dataset that can be used to fine-tune an LLM for the application. This dataset is designed to help
the fine-tuned LLM (1) generate the desired response to in-scope questions using relevant context
document chunks and (2) generate a negative response when no relevant context is provided. These
features give the enterprise greater control over the LLM responses while improving the trustworthiness
and accuracy of the RAG application.

Coming soon: The next article in this series, Part 3: Generative LLM Fine-tuning for RAG.

For more information on Lenovo offerings for Generative AI, see the Reference Architecture for Generative
AI Based on Large Language Models (LLMs), available from https://lenovopress.lenovo.com/lp1798-
reference-architecture-for-generative-ai-based-on-large-language-models.

Author
Chris Van Buren is a Staff Data Scientist at Lenovo. He researches generative AI for enterprise use cases
and has developed retrieval augmented generation (RAG) applications with open source, on-premises
LLMs.

Related product families
Product families related to this document are the following:

Artificial Intelligence
ThinkSystem SR675 V3 Server
ThinkSystem SR680a V3 Server
ThinkSystem SR685a V3 Server
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Notices
Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your
local Lenovo representative for information on the products and services currently available in your area. Any
reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any other product, program, or service. Lenovo may have patents or pending patent applications
covering subject matter described in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.
8001 Development Drive
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

The products described in this document are not intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The information contained in this document does not
affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express
or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information
contained in this document was obtained in specific environments and is presented as an illustration. The result
obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was
determined in a controlled environment. Therefore, the result obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may
have been estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

© Copyright Lenovo 2024. All rights reserved.

 

This document, LP1954, was created or updated on May 2, 2024.

Send us your comments in one of the following ways:

Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP1954
Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP1954.
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Trademarks
Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other
countries, or both. A current list of Lenovo trademarks is available on the Web at
https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®
iDataPlex®

Other company, product, or service names may be trademarks or service marks of others.
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