
Making LLMs Work for Enterprise Part 3: GPT Fine-
Tuning for RAG
Planning / Implementation

Fine-tuning a language model can tailor it to specific tasks. In this paper, we explore the process of fine-
tuning a large language model (LLM) using a custom dataset for retrieval augmented generation (RAG).
Specifically, we focus on base model sizing, from efficient inference to hardware requirements, and
software options for parameter-efficient fine-tuning.

The deliverables created by following the steps in this paper are:

Foundation model selected to LoRA fine-tune
Hardware requirements for fine-tuning and inference
Software selection for parameter-efficient fine-tuning
Fine-tuned LLM

Requirements
The following are the hardware and software requirements:

Hardware
Server with 1x NVIDIA A100 80GB GPU minimum (see the Requirements for Parameter
Efficient Fine-Tuning (PEFT) section for more information)

Software - one of the following fine-tuning software options:
NeMo Framework Training container from NGC Catalog
Python environment with PEFT library installed

Terminology
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Terminology
This section is meant to clarify the meaning of some of the generative AI-specific terms used in this article.

A large language model (LLM) is an AI model used for language tasks that is large (billions of
parameters or more) and is typically trained on vast amounts of text data.
Parameters refer to the weights and biases of a neural network model. These values are learned
and determine how the model behaves. In fine-tuning, parameters are adjusted to adapt the model to
a specific task or domain. The count of parameters in a model is referred to as the model’s size.
Pre-training is the process of training a language model on a large corpus of text data before fine-
tuning it for specific tasks. During pre-training, the model learns general language patters and
representations.
A base (or foundation) model is a pre-trained model that can be fine-tuned for many specific tasks.
It is the starting point for customization. Creators of foundation large language models, such as
OpenAI and Meta, typically release pre-trained versions and versions that are fine-tuned to chat or
follow instructions, as this is a very common use case of large language models.
Fine-tuning is the process of adapting a pre-trained model to a specific task or domain using
specific data.
Parameter-efficient fine-tuning (PEFT) is a growing collection of fine-tuning techniques that reduce
the compute and data needed to effectively tailor a model to a specific domain or task.
Low-Rank Adaptation (LoRA) is a technique for fine-tuning that adds a relatively small number of
trainable parameters to a pre-trained model and freezes the initial parameters of the model. This
reduces the model’s complexity and allows for fine-tuning with limited resources or data.
Inference refers to using a trained model to make predictions or generate output based on input
data. During inference, a model applies its learned knowledge to new examples. The computing
resources needed for inference are generally much lower than those needed for training.
Tokens are discrete units of text, such as a word or subword. These are the most basic blocks of
language that language models ingest and generate.
Throughput measures the rate at which a language model processes input data, typically measured
in tokens per second or overall inputs, such as sentences, per second. Optimizing throughput is
crucial for real-time applications, especially conversational AI such as chatbots and large-scale
language processing.
Latency refers to the time delay between inputting data for inference and receiving the output. High
latency can degrade user experience, especially in interactive systems. There is typically a trade-off
between optimizing latency, decreasing the wait time for a single response, and optimizing
throughput, increasing the total rate of data processing.
Batch size is the number of simultaneous inputs passed to a model. Changing batch size at
inference is the lever that balances throughput and latency: lower batch sizes decrease latency and
throughput, while higher batch sizes increase them.
Tensor parallelism is a method used to distribute the computational load of large models across
multiple GPUs or other processors. It involves splitting the model’s tensors - multi-dimensional arrays
of parameters - across different devices, allowing for simultaneous computation.

Confirm Model Selection and Sizing
The two most important parts of a RAG application are first, the data used in retrieval, and second, the AI
model used to extract and synthesize information from that data and generate a response in the desired
way.
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In Part 1 of this series, we defined several factors to consider when selecting a generative large language
model to fine-tune for RAG: model size, benchmark performance, context size, license terms, and domain.
In Part 2, we explained the process for creating a dataset for fine-tuning a language model to perform RAG
on enterprise data.

Now that we are prepared with a dataset to customize an LLM through fine-tuning, we should double-check
that we will be able to fine-tune this model with the hardware available in development, and that the model
can be inferenced with the latency and throughput required for success with the hardware available in
production. The most important factor in these considerations is the model’s size.

Requirements for Parameter Efficient Fine-Tuning (PEFT)
The GPU requirements for PEFT techniques, such as LoRA, are dependent on the size of the base model.

Relatively small language models, such as Llama 2 7B, Llama 2 13B, Llama 3 8B, and Mistral 7B
require a 1x NVIDIA A100 80GB GPU at minimum.
Larger language models, such as Llama 2 70B, Llama 3 70B, and Mixtral 8x7B require at least 4x
NVIDIA A100 80GB GPUs

Ensure you have the necessary hardware to fine-tune your selected base model.

Requirements for Inference
Additionally, it is important to consider the hardware you will have in production and the speed performance
requirements of your language model. The NVIDIA MLPerf AI Benchmarks page shows an MLPerf result for
inference throughput of 34,864 tokens/second for Llama 2 70B with the H200 GPU. With more GPUs, you
can take advantage of tensor parallelism to improve performance. Additionally, evaluating different batch
sizes within each model size-GPU count setup can help find the right balance between throughput and
latency. The posted measurements show values for different numbers of GPUs and batch sizes.

Before fine-tuning, consider what latency and throughput will be acceptable in your system. There are some
rules-of-thumb to consider when setting latency targets for human-computer interaction:

Latency below 100 milliseconds is perceived as instantaneous
Latency below 200 milliseconds is perceived to be acceptable in the flow of a conversation, a
relevant threshold for live chats and other real-time assistants
Latency above 500 milliseconds is perceived as a noticeable delay, important for applications where
the user expects a response but is not engaged in a real-time, on-going interaction
Latency above 1 second can impact user attention and may cause frustration
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Figure 1. Common applications of large language models have varying latency and throughput
requirements, from near-instantaneous chatbots to offline, mass data processing

For a given model and hardware, there is a tradeoff between latency and throughput. For real-time
conversational applications, like chatbots, minimizing latency is essential to the user experience. Other
applications of large language models, like offline data labeling, require high throughout to process large
amounts of text, and the high latency that comes with that is acceptable, because no one is waiting for
immediate results. Figure 1 shows a few common large language model applications and typical
requirements along the latency/throughput spectrum.

After considering these factors, you should have targets of latency and throughput, along with a selected
foundation model and the required hardware.

Deliverable: foundation model selected to LoRA fine-tune, hardware requirements for fine-tuning and
inference

PEFT Software Implementation
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PEFT Software Implementation
Two software options for performing LoRA fine-tuning are the NVIDIA NeMo toolkit and the HuggingFace
PEFT library. There are pros and cons to each option.

The NeMo toolkit integrates seamlessly with the rest of NVIDIA’s ecosystem, including TensorRT-
LLM for optimized inference. It includes containers for easily building fine-tuning environments.
The PEFT library integrates well with HuggingFace Hub, the largest collection of open source LLMs,
and with the Transformers library for inference. There is a large online community for support and
documentation.

Overall, the choice of software for fine-tuning should come down to what ecosystem you are already using
or familiar.

For either software option, the general steps in fine-tuning will be the same:

1. Download the base model
2. If necessary, change the format of the base model
3. Prepare the data into the required format for fine-tuning (see Part 2 of this series )
4. Perform LoRA fine-tuning, defining the base model to fine-tune, dataset to learn from, and hardware

devices on which to compute.
5. Evaluate the resulting model on a hold-out dataset.

Once you have chosen a base model and have your dataset ready, you should follow the documentation
for either software option to complete the LoRA fine-tuning process. Both software options have extensive
documentation for running LoRA fine-tuning.

We suggest starting with these pages, which walk step-by-step through the process:

NeMo Framework PEFT Playbook
LoRA methods guide for the PEFT library

Example Implementation
NeMo makes it very easy to fine-tune popular model architectures like Llama and Mistral. Within the NeMo
toolkit, we can use the megatron_gpt_finetuning.py script and set some configurations, and we are
ready to fine-tune the model. This section describes an example script for fine-tuning the Llama 2 7B model.
It is based on an example from NeMo, and we break it down step-by-step.

In this example, our current directory contains two key components for fine-tuning:

A directory called datasets – within this directory is a subdirectory with a descriptive name of the
dataset we are fine-tuning on, and within that are JSONL files with splits for training, validation, and
testing.
A .nemo model file for the Llama 2 7B model. The model can be downloaded from a repository such
as Hugging Face and then converted to .nemo format with the NeMo toolkit.

Here is a look at the directory structure as used in the script:

|- datasets
 |- chatbot_questions_and_answers
  |- train.jsonl
  |- valid.jsonl
  |- train.json
|- llama2-7b.nemo
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Start the script by defining variables that indicate where to find the dataset and model.

# This is name of the dataset we are fine-tuning on
MODEL_DATSET_NAME="chatbot_questions_and_answers"

# This is the nemo model we are finetuning
# Change this to match the model you want to finetune
MODEL="./llama2-7b.nemo"

# These are the training datasets (in our case we only have one)
TRAIN_DS="[datasets/"${MODEL_DATSET_NAME}"/train.jsonl]"

# These are the validation datasets (in our case we only have one)
VALID_DS="[datasets/"${MODEL_DATSET_NAME}"/valid.jsonl]"

# These are the test datasets (in our case we only have one)
TEST_DS="[datasets/"${MODEL_DATSET_NAME}"/test.jsonl]"

# These are the names of the test datasets
TEST_NAMES="["${MODEL_DATSET_NAME}"]"

Next we define the type of fine-tuning we would like to do. Here we choose a very popular option, LoRA.

# This is the PEFT scheme that we will be using. Set to "ptuning" for P-Tunin
g instead of LoRA
PEFT_SCHEME="lora"

If we are using multiple training datasets, we should set the sampling probability for each. Since we are only
using one training dataset in this example, we assigned its probability to 1.

# This is the concat sampling probability. This depends on the number of file
s being passed in the train set
# and the sampling probability for each file. In our case, we have one traini
ng file. Note sum of concat sampling
# probabilities should be 1.0. For example, with two entries in TRAIN_DS, CON
CAT_SAMPLING_PROBS might be
# "[0.3,0.7]". For three entries, CONCAT_SAMPLING_PROBS might be "[0.3,0.1,0
.6]"
# NOTE: Your entry must contain a value greater than 0.0 for each file
CONCAT_SAMPLING_PROBS="[1.0]"

Next, we set variables according to the hardware on which we are fine-tuning. Tensor parallel size
(TP_SIZE) should be set to the number of GPUs available, while pipeline parallel size (PP_SIZE) should
stay at 1.
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# This is the tensor parallel size (splitting tensors among GPUs horizontally
)
TP_SIZE=1

# This is the pipeline parallel size (splitting layers among GPUs vertically
)
PP_SIZE=1

# The number of nodes to run this on
NODE_COUNT=1

# The number of total GPUs used
GPU_COUNT=1

The last variable to set is the location for the fine-tuning results to be saved. This will be where the fine-
tuned model checkpoints will be stored.

# Where to store the finetuned model and training artifacts
OUTPUT_DIR="datasets/"${MODEL_DATSET_NAME}"/results"

Finally, we run the training script. This command contains typical hyperparameters for deep learning
training, including the maximum number of training steps, batch size, optimizer, and learning rate. At the
end of training, the program will output a loss value of the final model. We recommend testing if different
learning rates and optimizers can improve the performance at low maximum step values to determine an
effective training setup.

# Run the PEFT command by appropriately setting the values for the parameters
such as the number of steps,
# model checkpoint path, batch sizes etc. For a full reference of parameter
# settings refer to the config at https://github.com/NVIDIA/NeMo/blob/main/ex
amples/nlp/language_modeling/tuning/conf/megatron_gpt_finetuning_config.yaml

python /opt/NeMo/examples/nlp/language_modeling/tuning/megatron_gpt_finetuni
ng.py \
    trainer.log_every_n_steps=1 \
    trainer.precision=bf16 \
    trainer.devices=${GPU_COUNT} \
    trainer.num_nodes=1 \
    trainer.val_check_interval=10 \
    trainer.max_steps=2048 \
    model.restore_from_path=${MODEL} \
    model.peft.peft_scheme=${PEFT_SCHEME} \
    model.micro_batch_size=1 \
    model.global_batch_size=128 \
    model.tensor_model_parallel_size=${TP_SIZE} \
    model.pipeline_model_parallel_size=${PP_SIZE} \
    model.megatron_amp_O2=True \
    model.activations_checkpoint_granularity=selective \
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    model.activations_checkpoint_granularity=selective \
    model.activations_checkpoint_num_layers=null \
    model.activations_checkpoint_method=uniform \
    model.optim.name=fused_adam \
    model.optim.lr=1e-4 \
    model.answer_only_loss=True \
    model.data.train_ds.file_names=${TRAIN_DS} \
    model.data.validation_ds.file_names=${VALID_DS} \
    model.data.test_ds.file_names=${TEST_DS} \
    model.data.train_ds.concat_sampling_probabilities=${CONCAT_SAMPLING_PROB
S} \
    model.data.train_ds.max_seq_length=10000 \
    model.data.validation_ds.max_seq_length=10000 \
    model.data.train_ds.micro_batch_size=1 \
    model.data.train_ds.global_batch_size=128 \
    model.data.validation_ds.micro_batch_size=1 \
    model.data.validation_ds.global_batch_size=128 \
    model.data.train_ds.num_workers=0 \
    model.data.validation_ds.num_workers=0 \
    model.data.test_ds.num_workers=0 \
    model.data.validation_ds.metric.name=loss \
    model.data.test_ds.metric.name=loss \
    exp_manager.create_wandb_logger=False \
    exp_manager.checkpoint_callback_params.mode=min \
    exp_manager.explicit_log_dir=${OUTPUT_DIR} \
    exp_manager.resume_if_exists=True \
    exp_manager.resume_ignore_no_checkpoint=True \
    exp_manager.create_checkpoint_callback=True \
    exp_manager.checkpoint_callback_params.monitor=validation_loss \
    ++exp_manager.checkpoint_callback_params.save_best_model=False \
    exp_manager.checkpoint_callback_params.save_nemo_on_train_end=True \
    model.save_nemo_on_validation_end=False

Deliverable: fine-tuned LLM

Conclusion
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Conclusion
We have provided guidance on how to ensure the foundation model selected for fine-tuning on a custom
dataset will work with the hardware available in development and meet the production performance
requirements. Additionally, we have introduced two software options for performing parameter-efficient fine-
tuning.

Both the NeMo toolkit and PEFT Python library enable us to customize models with our own datasets and
integrate with the NVIDIA and HuggingFace ecosystems, respectively. With either of these software
options, we can customize a model through fine-tuning, improving its ability to perform the tasks associated
with our RAG use case.

This concludes the series on Making LLMs Work for Enterprise.

In Part 1, we covered the considerations for selecting the LLMs used in the processes of synthetic
dataset generation and evaluation as well as the LLM to fine-tune for an application. We also
introduced RAGAS, a framework for continuous evaluation of a RAG system.
In Part 2, we explained the process for deciding on the scope of an LLM application, compiling a
collection of documents for RAG, and creating a synthetic dataset for fine-tuning.
And finally, in Part 3 (this document), we covered popular methods for fine-tuning an LLM using
LoRA. By following this process, you can create a customized LLM with high accuracy and
controllability for enterprise use cases.
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Notices
Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your
local Lenovo representative for information on the products and services currently available in your area. Any
reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any other product, program, or service. Lenovo may have patents or pending patent applications
covering subject matter described in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.
8001 Development Drive
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

The products described in this document are not intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The information contained in this document does not
affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express
or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information
contained in this document was obtained in specific environments and is presented as an illustration. The result
obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was
determined in a controlled environment. Therefore, the result obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may
have been estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.
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Trademarks
Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other
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The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®

Other company, product, or service names may be trademarks or service marks of others.
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