
Lenovo LLM Sizing Guide
Planning / Implementation

Large Language Models (LLMs) have revolutionized the field of natural language processing, enabling
applications such as text generation, sentiment analysis, and language translation. However, the
computational requirements for running these models can be substantial, making it challenging for solution
architects to design and configure systems that meet the needs of their customers.

To address this challenge, this LLM Sizing Guide is designed to provide you with a comprehensive
understanding of how LLMs work, their computational requirements, and the key factors that impact their
performance. The goal of this guide is to equip you with the knowledge and tools needed to assess
customer requirements, design capable systems, and deliver successful LLM deployments quickly and
accurately.

The guide, inspired from NVIDIA’s LLM Inference Sizing, will cover vital topics such as the rule of thumb for
estimating GPU memory requirements for inferencing and training/fine-tuning, gathering requirements from
customers, understanding benchmarks and performance metrics, and estimating total cost of ownership. By
following this guide, you will be able to navigate the complex landscape of LLMs and provide their
customers with optimized solutions that meet their specific needs.

Throughout this guide, we will provide practical examples, formulas, and guidelines to help solution
architects estimate the computational requirements for various LLM scenarios. We will also discuss the
importance of understanding customer requirements, such as model, quantization, token size, and latency
requirements and how these factors impact system design and performance.

In the next section, we will introduce the "Rule of Thumb" for estimating GPU memory requirements, starting
with inferencing. This will provide you with a simple and effective way to estimate the minimum GPU
memory needs for running LLMs in production environments.

Rule of Thumb
The Rule of Thumb provides a simplified approach to estimating the computational requirements for running
Large Language Models (LLMs). This section outlines the key factors that impact GPU memory
requirements and provides formulas for quickly estimating the minimum memory needs for inferencing and
fine-tuning/training.

Inferencing
Inferencing refers to the process of using a trained LLM to generate text or make predictions on new,
unseen data. To estimate the minimum GPU memory requirement for inferencing, we can use the following
formula:

� = � * � * 1.2

Where:

� = GPU memory expressed in Gigabytes
� = Model (parameter) size in Billions
� = Quantization factor in Bytes (1 Byte = 8 bits) - see below

Lenovo LLM Sizing Guide 1

https://developer.nvidia.com/blog/practical-strategies-for-optimizing-llm-inference-sizing-and-performance/
https://www.substratus.ai/blog/calculating-gpu-memory-for-llm
https://lenovopress.lenovo.com/updatecheck/LP2130/ab17391dd1735f8b2253358856c8cb1c

1.2 = Represents a 20% overhead for loading additional data into GPU memory

The quantization factor � varies depending on the precision used:

INT4: � = 0.5
FP8/INT8: � = 1
FP16: � = 2
FP32: � = 4

For example, to estimate the minimum GPU memory requirement for running Llama 3.1 with 70 billion
parameters at 16-bit quantization (FP16), we can plug in the values as follows:

� = 70 ∗ 2 ∗ 1.2 = 168 GB

Figure 1: Example GPU Memory requirements for inferencing

This formula provides a quick and simple way to estimate the minimum GPU memory requirement for
inferencing, allowing solution architects to design systems that meet the needs of their customers.

Fine-Tuning/Training
Fine-tuning or training a Large Language Model (LLM) requires considerably more computational resources
than inferencing. The minimum GPU memory requirement for fine-tuning/training can be estimated using
the following formula:

Total = (� + 12 + �) bytes/parameter = � * (2� + 12) GB memory needed

Where:

� = Model (parameter) size in billions
� = Quantization factor in Bytes (1 Byte = 8 bits)

However, this formula provides an extreme estimate, as it assumes that the full model parameters, optimizer
states, and gradients are stored in memory. In practice, techniques like Low-Rank Adaptation (LoRA) and
Quantized LoRA (QLoRA) can drastically reduce the memory requirements.

To give you a better idea, here are some estimated GPU memory requirements for fine-tuning LLMs using
different methods and precisions:

Lenovo LLM Sizing Guide 2

https://lenovopress.lenovo.com/assets/images/LP2130/Picture1.png
https://modal.com/blog/lora-qlora

Table 1. Comparison of VRAM requirements for different model sizes and fine-tuning techniques

Method Precision 7B 13B 30B 70B 110B
Full 16 67GB 125GB 288GB 672GB 1056GB
LoRA 16 15GB 28GB 63GB 146GB 229GB
QLoRA 8 9GB 17GB 38GB 88GB 138GB
QLoRA 4 5GB 9GB 20GB 46GB 72GB

As you can see, using LoRA or QLoRA can reduce the memory requirements by 75-90% compared to the
full fine-tuning method. This is because these techniques store only the adapted parameters and not the
entire model, resulting in significant memory savings.

When designing systems for fine-tuning/training LLMs, it is critical to consider the specific method and
precision used, as well as the model size, to ensure that the system meets the required computational
resources. By using techniques like LoRA or QLoRA, solution architects can design more efficient and cost-
effective systems that meet the needs of their customers.

Gathering requirements
To accurately determine the necessary system configuration for a Large Language Model (LLM)
deployment, it is important to gather specific requirements from the customer. These requirements will help
estimate inference performance and ensure the system meets the desired goals.

Figure 2: Gathering necessary requirements for sizing

The following five pieces of information should be collected before estimating inference performance:

1. Model Selection :
Identify the LLM model intended for use in this project. The size of the model notably impacts
inference performance, with larger models being slower and more expensive. Note that smaller
models can have excellent quality for specific tasks while reducing inference costs. Therefore, it is
recommended to explore smaller models as well. Understanding the chosen model's characteristics
will help in estimating the computational resources required.

Lenovo LLM Sizing Guide 3

https://modal.com/blog/how-much-vram-need-fine-tuning
https://lenovopress.lenovo.com/assets/images/LP2130/Picture2.png

When gathering requirements for an LLM use case, it is vital to consider the input token length,
which is one of the factors in determining the model's performance. The context window, defined as
the sum of input and output tokens, plays a substantial role in this process. New models, such as
Llama 3.1, support larger context windows of up to 128,000 tokens.

2. Input Tokens:
Determine the average number of tokens in the prompt to the LLM, including:

System prompt
Context
User prompt

For English language models, one token is approximately 0.75 of a word. Including system prompts
and context in the token count ensures that the entire input sequence is considered when estimating
performance.

To accurately calculate the input token count, include all elements that contribute to it, such as
system prompts (custom instructions), retrieved documents (in Retrieval Augmented Generation
pipelines), and chat history (previous conversation exchanges). Each of these components counts
towards the maximum budget of tokens that can be passed into the model.

Large input length can impact inference performance, as words are converted to embeddings and KV
cache grows quadratically. Applications like RAG pipelines may require larger input lengths, resulting
in increased first-token latency due to the substantial amount of data being processed.

We will delve deeper into tokens and their impact on latencies later in this paper, exploring how they
affect the performance of LLMs and what considerations are necessary for optimal model operation.

3. Output Tokens:
Establish the average number of tokens in the LLM output. This is necessary because generating
more tokens requires more computational resources and time. Understanding the expected output
size will help in designing a system that can handle the required throughput without compromising on
latency or quality.

4. Average Requests per Second (RPS):
To ensure optimal performance and efficient resource utilization, determine the peak number of
requests the system should process per second. When sizing for on-premises deployments, it is vital
to base calculations on peak usage, rather than average usage.

To account for variability in request patterns, we use the 95th percentile of the Poisson PPF (point
probability function) of average RPS (requests per second). This approach helps to identify the
maximum expected load, allowing us to design a system that can handle peak demands without
being underutilized during non-peak periods.

The process involves obtaining the average request rate from the customer and calculating the peak
request rate using the 95th percentile of the Poisson distribution. This method provides a more
accurate representation of the system's requirements, as it considers the natural variability in request
patterns. It is particularly important to note that if the system is not running at peak capacity, the
effective cost per token can increase considerably.

5. Latency Requirements:
Understand the customer's latency goals and limits, including:

1. First-token latency: The time it takes for the model to generate the first token of the response.
2. Last-token latency: The total time it takes for the model to generate the entire response.

Latency is a critical factor in many applications, as high latency can negatively impact user
experience. Constraining to a lower first-token latency (TTFT) would drastically hamper throughput,
meaning that the system's ability to process multiple requests simultaneously would be compromised.
Therefore, it's essential to strike a balance between latency and throughput based on the customer's
specific requirements.

Lenovo LLM Sizing Guide 4

https://developer-blogs.nvidia.com/wp-content/uploads/2024/08/S62797-LLM-Inference-Sizing_-Benchmarking-End-to-End-Inference-Systems.pdf

These requirements are crucial for estimating inference performance, sizing the system, and ensuring it
meets the customer's expectations. By gathering this information, you'll be able to better understand the
customer's needs and design an appropriate system configuration that balances performance, cost, and
quality. In the next sections, we will delve deeper into some of these requirements and explore how they
impact LLM deployment.

Technical Dive: Understanding LLMs
In this section, we will explore the intricate workings of Large Language Models (LLMs) by diving into their
technical aspects. We will investigate stages of LLM execution, understand key measurement metrics, and
look at techniques that speed up inferencing.

In this section:

Two Stages of LLM Execution: Prefill vs Decoding
LLM Inference Measurement Metrics
Inflight batching
Tensor Parallelism

Two Stages of LLM Execution: Prefill vs Decoding
Large Language Models (LLMs) are complex systems that involve multiple stages of processing to generate
human-like text responses. Understanding these stages is helpful for optimizing performance, reducing
latency, and improving overall user experience. In this section, we will delve into the two primary stages of
LLM execution: Prefill and Decoding.

Prefill Stage

The Prefill stage refers to the time it takes for an LLM to process a user's input prompt and generate the first
output token, which is approximately equivalent to a word. This stage encompasses the following steps:

1. Loading the user prompt: The user's input is received and loaded into the system.
2. Populating KV-cache: During this stage, the LLM populates its Key-Value (KV) cache with

information from the input tokens. This cache is used to store and retrieve relevant context-specific
data.

3. Request reception to first token : The time it takes for the LLM to process the input prompt and
generate the first output token.

The Prefill stage is primarily compute-bound, meaning that its performance is largely dependent on the
computational resources available. The time it takes to complete this stage depends only on the number of
input tokens, making it a predictable and consistent process.

Decoding Stage

The Decoding stage, also known as generation or expansion, is where the LLM generates response tokens
one by one, building upon the initial output token produced during the Prefill stage. This stage involves:

1. Inter-token latency: The time it takes to generate each subsequent token after the first one.
2. Token-by-token generation: The LLM generates response tokens word by word, using the context

and information gathered during the Prefill stage.
3. Dependency on input and output tokens : The inter-token latency depends on both the number of

input tokens and the number of output tokens being generated.

In contrast to the Prefill stage, Decoding is typically memory-bound, meaning that its performance is
heavily influenced by the availability of memory resources. As the LLM generates more tokens, it requires
more memory to store and manage the growing context, which can lead to increased latency.

Lenovo LLM Sizing Guide 5

https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/#understanding_llm_inference

LLM Inference Measurement Metrics
When evaluating the performance of Large Language Models (LLMs), several key metrics are used to
measure inference speed. These include:

Time to First Token (TTFT): The time it takes to process the input and generate the first token.
Inter-token Latency (ITL): The time it takes to generate each subsequent token after the first one,
also known as Time Per Output Token (TPOT).
End-to-End Latency (E2E) : The total time it takes to process a prompt and generate all the tokens,
from input to output.

These metrics provide insights into the model's performance, helping to identify bottlenecks and optimize
inference speed.

Inflight batching
Inflight batching (IFB) is a specialized technique used during Large Language Model (LLM) inference to
strike a balance between GPU memory and compute utilization, ultimately reducing latency. This method is
particularly effective in auto-regressive inference, where the LLM generates tokens sequentially, relying on
previously generated tokens to produce the next ones.

IFB allows sequences at various stages (both prefill and decoding) to be processed within the same batch
without waiting for all requests to complete before introducing new ones. This approach offers several key
benefits:

Constant Batch Size: IFB enables a nearly constant batch size for each token generation, leading to
higher GPU utilization.
Quicker Execution Starts: New requests can begin execution more quickly when slots become
available, as the scheduler only waits for the next token's generation rather than the completion of
current requests.

TensorRT-LLM incorporates custom Inflight Batching to optimize GPU utilization during LLM serving. This
feature:

Replaces completed requests in the batch.
Evicts requests after the End-of-Sequence (EoS) marker and inserts new requests.
Improves throughput, time to first token, and overall GPU utilization.

Moreover, IFB is seamlessly integrated into the TensorRT-LLM Triton backend and can be managed
through the TensorRT-LLM Batch Manager. When combined with other techniques such as balancing
memory-bound and compute-bound operations, chunked decoding, speculative decoding, and sparsity, IFB
enhances the throughput of LLMs, making it an indispensable tool for efficient LLM inference.

Lenovo LLM Sizing Guide 6

https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/#in-flight_batching
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/getting_started/trtllm_user_guide.html
https://developer.nvidia.com/blog/practical-strategies-for-optimizing-llm-inference-sizing-and-performance/

Figure 3: Inflight batching in action

Tensor Parallelism
Tensor Parallelism (TP) is a technique utilized in Large Language Model (LLM) inference to distribute the
computational load across multiple GPUs. This method involves splitting one model across several GPUs,
which relies heavily on efficient data exchange between these GPUs. TP is particularly beneficial for larger
models where the memory requirements exceed the capacity of a single GPU.

Key Characteristics of Tensor Parallelism:

Lower Latency but Lower Throughput: While TP can reduce latency by parallelizing computations,
it may also lead to lower overall throughput due to the overhead associated with inter-GPU
communication.
Requirement for Bigger Models: For larger models like LLaMa-70B, a tensor parallelism of at least
2 (TP >= 2) is required. This ensures that the model can be adequately split across multiple GPUs to
fit within the available memory and computational resources.
Recommendation for NVLink-enabled Servers : When TP exceeds 2, NVIDIA strongly
recommends using NVLink-enabled servers for inference. NVLink provides a high-bandwidth, low-
latency interconnect that significantly improves data transfer between GPUs compared to traditional
PCIe connections.

Lenovo LLM Sizing Guide 7

https://lenovopress.lenovo.com/assets/images/LP2130/Picture3.png

Understanding benchmarks
Benchmarks are central in sizing and choosing an ideal configuration for customers, as they evaluate
tradeoffs between key metrics like throughput, latency, and request rate. Understanding these benchmarks
helps determine the optimal configuration for large language model (LLM) inference, allowing informed
decisions about hardware and software requirements.

In this section:

Throughput vs Latency
Understanding Max Batch Size, Concurrency, Request Rate, and Throughput

Throughput vs Latency
In the context of LLM inference, achieving a balance between throughput and latency is critical. Throughput
refers to the number of requests that can be processed per unit time, while latency is the time taken to
process a single request from start to finish.

The Tradeoff:

Introducing latency limits can decrease available throughput. Conversely, relaxing latency constraints can
lead to much higher throughput. Understanding customer use cases provides estimates of input tokens,
output tokens, and average requests per unit time, allowing for the proposal of specific hardware that
matches required throughput while maintaining necessary latency.

Combining multiple requests to increase throughput can introduce delays, increasing latency for individual
requests. LLM inference involves two phases - prefill (high latency, benefits from parallel processing) and
decode (lower latency, lower compute utilization).

Practical Implications:

1. High Throughput: Ideal for large-scale deployments with high request volumes.
2. Low Latency: Crucial for real-time response applications, such as conversational AI or interactive

systems.

Lenovo LLM Sizing Guide 8

Figure 4: Throughput vs First Token Latency graph for Llama 3 70B model with 2000 input and 2000 output
tokens

By understanding and managing the throughput-latency tradeoff, LLM inference systems can be optimized
to meet specific application requirements. For custom benchmarking, tools like GenAI-Perf by NVIDIA can
provide valuable insights into a particular model's performance on a system.

To learn how to interpret the benchmark graphs, see the topic at the end of this document, Additional
Information - Reading the graphs for sizing.

Understanding Max Batch Size, Concurrency, Request Rate, and Throughput
It can get a little confusing handling all the jargons, so let's break down each concept to clarify their
relationships and importance in system evaluation.

Max Batch Size
Batch Size and Concurrency
Concurrency and Request Rate as a Result Metric
Concurrency and Request Rate as an Input Parameter
Recommendations

Max Batch Size

The max_batch_size parameter has two roles: one during engine build and another at runtime.

1. Engine Build: This setting ensures that the resulting system, with its capacity for a certain batch
size, fits within the available memory. It's essentially about capacity planning to prevent memory
issues during execution.

Lenovo LLM Sizing Guide 9

https://lenovopress.lenovo.com/assets/images/LP2130/Picture4.png
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/perf_analyzer/genai-perf/README.html

2. Runtime: This setting determines how many requests can be batched together before being
processed. The runtime max_batch_size must be less than or equal to the build-time
max_batch_size. The actual batching of requests in real scenarios is influenced by this parameter,
directly affecting efficiency and performance.

Batch Size and Concurrency

Concurrency (C) < Max Batch Size (MBS) : When the number of concurrent requests is less than
the maximum batch size, the engine typically processes batches with a size equal to the concurrency
level. This means there are free slots available in each batch, as not all potential positions in the
batch are filled.
Concurrency (C) >= Max Batch Size (MBS) : If concurrency equals or exceeds the max batch size,
then the batches are usually full, processing at maximum capacity. The queue for new requests will
start to grow, with an average size of C - MBS, as incoming requests wait for previous batches to
finish.

Concurrency and Request Rate as a Result Metric

To gauge system performance comprehensively, consider:

Throughput: The number of requests the system can process per unit time.
End-to-end Latency: The total time taken for a request to be processed from start to finish.
Concurrency: The number of requests that can be handled simultaneously.

A system with high concurrency and high latency might achieve the same throughput as one with lower
concurrency but lower latency. However, the latter is more efficient because it responds faster to individual
requests.

Therefore, using "requests per minute" (or a similar time-based metric) as the primary measure for sizing
systems and discussing performance with stakeholders provides a balanced view of system capacity. It
helps factor in both concurrency and latency requirements, offering a clearer picture of what the system can
handle efficiently.

Concurrency and Request Rate as an Input Parameter

For accurate speed measurements (throughput), it's indispensable to maintain a constant engine batch size
from one processing cycle to another.

Using Concurrency as an Input : This approach ensures that the batch size remains consistent,
providing reliable measurements.
Setting a Request Rate as Input Parameter : This can be problematic because if the request rate
exceeds the system's throughput, the queue will continuously grow, increasing latency. Conversely,
setting a request rate below the system's throughput means not all available slots are utilized,
leading to underperformance.

Recommendations

1. Use Concurrency with Token Sizes as Input Metrics : This allows for controlled experiments that
can stress the system to its limits or measure its responsiveness under lighter loads.

2. Use Request Rate as a Result Metric : It provides insight into how many requests the system can
actually process within a given timeframe, reflecting both its capacity and efficiency.

By controlling these parameters and focusing on the right metrics, enterprises can design more efficient
systems that balance throughput, latency, and resource utilization effectively.

Lenovo LLM Sizing Guide 10

Total Cost of Ownership: Cloud vs On-prem
Deploying Large Language Model (LLM) inferencing is becoming essential for modern businesses. There
are two main options: cloud-based and on-premise. We will explore the benefits and limitations of each
option to help you make an informed decision.

In this section:

Cloud-Based Deployment
On-Premise Deployment
Comparison of Cloud and On-Premise Deployment
Cost recap

Cloud-Based Deployment
Cloud-based deployment offers a "pay-as-you-go" model, where you only pay for the resources used.
However, there are some drawbacks to consider:

Data Security: Unless an enterprise-grade license is purchased, your data may be used to train
future models, potentially leading to data leakage.
Price Uncertainty: Prices are subject to change, and you have less control over the model, which
may not support fine-tuning or customizations.
Limited Control: You have limited control over the latency and throughput of the prompts.

The cost of cloud-based deployment is typically calculated based on input and output tokens, with a fixed
price per token. For example, one million input tokens may cost $15, while a million output tokens cost $60.
To estimate the cost, you can use a calculator that considers the number of input and output tokens.

Lenovo LLM Sizing Guide 11

https://docsbot.ai/tools/gpt-openai-api-pricing-calculator

On-Premise Deployment
On-premise deployment requires a substantial upfront investment but offers several benefits:

Complete Control: You have complete control over the system, allowing for changes as needed.
Cost-Effective: With a fixed utilization near capacity, on-premise deployment can be cost-effective in
the long run.
Security: Your data is secure, and you have full control over the system.

The costs associated with on-premise deployment include:

1. GPU Server Purchase: The price of purchasing a GPU server, which varies depending on the
hardware and type of system.

2. Datacenter Costs: Costs related to electricity, renting space, staff, and other expenses.
3. License Fees: An annual license fee for any additional services e.g., NVAIE

To find the cost per 1M prompts (calls):

Simplifying,

where

Z = Cost per 1M prompts
C = Total On Prem Cost averaged over a year
X = Prompts per second (throughput) on system

Comparison of Cloud and On-Premise Deployment
To make a fair comparison between cloud and on-premise deployment, we assume that:

1. The models deployed on both platforms are equivalent in quality.
2. The latency and throughput achieved on both platforms are similar.

We can compare the on-prem costs per 1M prompts to on-cloud costs per 1M prompts to get a fair
comparison. We could even find out per input token and output token cost for on-prem.

Lenovo LLM Sizing Guide 12

Cost recap
In conclusion, both cloud-based and on-premise deployment options have their benefits and limitations.
Cloud-based deployment offers a flexible and scalable solution but may compromise on data security and
control. On-premise deployment provides complete control and security but requires an upfront investment.
In long-term, a break-even point is reached where the on-premise deployment makes financial sense than
on-cloud instances.

Recommendation

When deciding between cloud-based and on-premise deployment, consider the following:

Data security: If it's your top priority, on-premise deployment is better.
Scalability: If you need to scale quickly, cloud-based deployment might be more suitable.
Budget: If budget is a concern, on-premise deployment can be cost-effective in the long run.

Ultimately, the decision depends on your specific needs and priorities.

Conclusion
In conclusion, accurately estimating performance and computational requirements is crucial when designing
systems for Large Language Model (LLM) deployment. To achieve this, gather specific requirements from
customers, including model selection, input token length, quantization, and latency needs. The provided
formulas and guidelines, such as the "Rule of Thumb" for estimating GPU memory requirements, serve as
valuable tools for solution architects to quickly assess and design capable systems that meet customer
demands.

By considering key factors like model size, precision, and quantization, you can optimize system
configurations to balance performance and cost. Additionally, techniques like Low-Rank Adaptation (LoRA)
and Quantized LoRA (QLoRA) can radically reduce memory requirements during fine-tuning and training,
enabling more efficient and cost-effective solutions.

This LLM Inference Sizing Guide empowers with the knowledge and expertise needed to navigate the
complex landscape of LLMs, deliver successful deployments, and provide tailored solutions that meet the
unique needs of their customers. By following these guidelines and best practices, you can ensure optimal
performance, reduce costs, and drive business success in the rapidly evolving field of natural language
processing.

Additional Information - Reading the graphs for sizing
A graph based on the benchmark data from NVIDIA NIMs looks like this:

Lenovo LLM Sizing Guide 13

https://docs.nvidia.com/nim/benchmarking/llm/latest/index.html

Figure 5: Sample Throughput vs First Token Latency graph for Llama 3 8B model with 2000 input and 2000
output tokens

The interactive graphs allow you to select the models, devices, input + output token combination, X-axis
metric and Y-axis result. For X-axis we could have input parameters like TTFT, TTLT, or ITL for tokens. For
Y-axis we have output parameters like prompts per sec per system or out_tokens per sec per system or per
GPU instance.

An example sizing:

A customer wants a 2000 in, 2000 out token with llama3 8B model and wants TTFT under 1 sec. Using the
constraints we find a point on the graph left of 1 sec TTFT (FTL), it would look like this:

Figure 6: Choosing FTL under 1 second for Llama 3 8B model with 2000 input and 2000 output tokens

This tells you that a single 8xH100 system would be able to handle up to 400 concurrent (peak) users when
using TRT-LLM. However, we see that this has the total latency over 38 seconds. If we want a lower total
latency (let’s say under 20 secs), we will have to sacrifice the throughput, reforming X-axis as total latency
(TTLT), we have:

Lenovo LLM Sizing Guide 14

https://lenovopress.lenovo.com/assets/images/LP2130/Picture5.png
https://lenovopress.lenovo.com/assets/images/LP2130/Picture6.png

Figure 7: Choosing E2E under 20 seconds for Llama 3 8B model with 2000 input and 2000 output tokens

Here we have a point with 100 concurrent users with 358ms TTFT and under 20s TTLT. As we see, setting
latency constraints heavily affects the throughput and max concurrency.

To run benchmarks on your own system, refer NVIDIA’s NIM for LLM Benchmarking Guide to use GenAI-
Perf to get LLM metrics.

Authors
Sachin Gopal Wani is an AI Data Scientist at Lenovo, working on end-to-end Machine Learning (ML)
applications for varying customers, and developing the NewTalk AI framework. He graduated from Rutgers
University as a gold medalist specializing in Machine Learning, and has secured the J.N. Tata Scholarship.

David Ellison is the Chief Data Scientist for Lenovo ISG. Through Lenovo’s US and European AI Discover
Centers, he leads a team that uses cutting-edge AI techniques to deliver solutions for external customers
while internally supporting the overall AI strategy for the World Wide Infrastructure Solutions Group. Before
joining Lenovo, he ran an international scientific analysis and equipment company and worked as a Data
Scientist for the US Postal Service. Previous to that, he received a PhD in Biomedical Engineering from
Johns Hopkins University. He has numerous publications in top tier journals including two in the
Proceedings of the National Academy of the Sciences.

Related product families
Product families related to this document are the following:

Artificial Intelligence

Lenovo LLM Sizing Guide 15

https://lenovopress.lenovo.com/assets/images/LP2130/Picture7.png
https://docs.nvidia.com/nim/benchmarking/llm/latest/index.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/perf_analyzer/genai-perf/README.html
https://lenovopress.lenovo.com/software/ai

Notices
Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your
local Lenovo representative for information on the products and services currently available in your area. Any
reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any other product, program, or service. Lenovo may have patents or pending patent applications
covering subject matter described in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.
8001 Development Drive
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

The products described in this document are not intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The information contained in this document does not
affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express
or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information
contained in this document was obtained in specific environments and is presented as an illustration. The result
obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was
determined in a controlled environment. Therefore, the result obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may
have been estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

© Copyright Lenovo 2025. All rights reserved.

This document, LP2130, was created or updated on January 24, 2025.

Send us your comments in one of the following ways:

Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP2130
Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP2130.

Lenovo LLM Sizing Guide 16

https://lenovopress.lenovo.com/LP2130
mailto:comments@lenovopress.com?subject=Feedback for LP2130
https://lenovopress.lenovo.com/LP2130

Trademarks
Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other
countries, or both. A current list of Lenovo trademarks is available on the Web at
https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®

Other company, product, or service names may be trademarks or service marks of others.

Lenovo LLM Sizing Guide 17

https://www.lenovo.com/us/en/legal/copytrade/

	Lenovo LLM Sizing Guide Planning / Implementation
	Rule of Thumb
	Inferencing
	Fine-Tuning/Training

	Gathering requirements
	Technical Dive: Understanding LLMs
	Two Stages of LLM Execution: Prefill vs Decoding
	Prefill Stage
	Decoding Stage

	LLM Inference Measurement Metrics
	Inflight batching
	Tensor Parallelism

	Understanding benchmarks
	Throughput vs Latency
	Understanding Max Batch Size, Concurrency, Request Rate, and Throughput
	Max Batch Size
	Batch Size and Concurrency
	Concurrency and Request Rate as a Result Metric
	Concurrency and Request Rate as an Input Parameter
	Recommendations

	Total Cost of Ownership: Cloud vs On-prem
	Cloud-Based Deployment
	On-Premise Deployment
	Comparison of Cloud and On-Premise Deployment
	Cost recap

	Conclusion
	Additional Information - Reading the graphs for sizing
	Authors
	Related product families
	Notices
	Trademarks

