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In Part 1 of this series of papers , we analyzed the performance of different LLM architectures—encoder-
only, decoder-only, and encoder-decoder—on Intel CPU-powered Lenovo ThinkEdge SE450 server. The
study evaluated latency, throughput, batch size, and CPU utilization, offering insights into how each
architecture scales under various workloads.

In Part 1, we found that encoder-only models provided stable throughput and efficient CPU utilization, while
decoder-only models demonstrated strong scaling capabilities but required higher memory. Encoder-
decoder models exhibited the highest computational demand, impacting latency and overall performance.
The findings helped businesses understand the trade-offs between performance and resource consumption
for different LLM types.

Building upon these findings, this second paper in the series explores how Intel hardware techniques and
Intel Extension for PyTorch (IPEX) accelerate Al inference, speeding up real-world Al applications. Our
focus shifts from general benchmarking to hardware and software acceleration and optimization strategies
that enhance large-scale Al deployments.

Let’s introduce what is AMX, AVX-512 and IPEX:

e AMX (Advanced Matrix Extensions): A hardware-level accelerator designed for deep learning,
optimized for matrix multiplication, and supporting low-precision inference (BF16, INT8), available in
Intel Xeon 4th Gen CPUs and newer.

e AVX-512 (Advanced Vector Extensions 512): An Intel CPU instruction set that enhances parallel
processing with 512-bit wide vector operations, boosting performance for Al inference, cryptography,
and scientific computing.

e |PEX (Intel Extension for PyTorch): A software-level optimization framework that enhances all types
of PyTorch deep learning workloads by improving computation efficiency on Intel CPU.

In this paper, we conduct three different inference configurations:

o |[PEX + AMX: IPEX optimization with Intel Advanced Matrix Extensions enabled.
e |PEX + AVX-512: IPEX optimization with Intel AVX-512 (AMX disabled).
e Baseline PyTorch: Standard PyTorch without IPEX or AMX optimizations.

Key takeaways for readers:

e Understand how Intel’s hardware and software optimizations enhance Al inference performance.
e |dentify the most suitable LLM architecture for various real-world Al applications.
e Learn how to leverage Intel Extension for PyTorch for optimized Al workloads.

Click here to check for updates
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Background

Different LLM architectures are optimized for specific Al tasks. Understanding their strengths and best use
cases is crucial for selecting the right model for Al inference.

Table 1. LLM Architectures and Real-World Use Cases

Architecture Best for Tasks Like Examples
Encoder-Only Sentiment Analysis, Text Similarity, Named Entity Recognition BERT, RoBERTa
Decoder-Only Text generation, Creative Writing, Conversational Al GPT-3, OPT, Llama
Encoder-Decoder Translation, summarization, QA T5, BART

The rest of the paper demonstrates how Al inference can achieve significant improvements in efficiency,
speed, and scalability by leveraging Intel’s hardware and software optimizations,

Methodology

To understand the impact of Intel’s hardware and software optimizations, we evaluate three LLMs
representing different architectures:

e BERT-Base-NER (Encoder-Only): A Named Entity Recognition (NER) model based on BERT-Base,
commonly used for text classification and entity extraction in documents.

e OPT-350M (Decoder-Only): A text generation model optimized for generating coherent and
contextually accurate text, widely used in chatbots and conversational Al.

e m2m100_418M (Encoder-Decoder): A translation model designed to handle multilingual machine
translation, enabling seamless language conversion in real-world applications.

These models were chosen to reflect diverse NLP tasks, allowing a comprehensive comparison of inference
performance under various workloads.

To quantify the effectiveness of Intel’s optimizations, we assess the following key performance metrics:

1. Latency: The time taken to process a single inference request.

2. Throughput: The number of inference requests handled per second.

3. Concurrent Users: The number of parallel inference requests supported efficiently.
4

. CPU Utilization (Profiler): Measures the compute allocation of different model layers during
inference workloads.

Results and Analysis

In this section, we present the performance evaluation of our approach based on key metrics, including
latency, throughput, concurrent users, and CPU utilization. The analysis is conducted using benchmark
tests under controlled environments to ensure reliability and accuracy. We compare our results against plain
PyTorch model as baseline to assess improvements and identify potential bottlenecks.

Latency

Throughput

Concurrent Users

CPU Utilization within Model
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Latency

Latency measures the time taken to process an inference request, lower latency ensures faster Al
responses for real-time applications. In our test, we used a fixed 128 input token length with batch sizes
range from 1 to 32 across all three model architectures.

Latency vs Batch Size by Accelerator Type
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Figure 1. Latency vs Batch Size by Accelerator Type

Observations:

1. Latency Improvement: The latency improvement is most pronounced in bigger batch sizes but
remains significant even as the batch size smaller for Encoder Only and Encoder Decoder Model. It
shows the model benefits more from IPEX + AMX in increased workloads.

2. Model Comparison: Encoder-only model demonstrated better scaling efficiency with increased
batch sizes and input token length, it can boost up to 10x latency decrease in Al inference

Throughput

Throughput defines the number of requests processed or token generated per second. Higher throughput
indicates better scalability for large-scale Al deployments. we used a fixed 128 input token length with batch
sizes range from 1 to 32 across all three model architectures.
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Figure 2. Throughput vs Batch Size by Accelerator Type

Observations:

1. Throughput Improvement: The throughput advantage of IPEX + AMX becomes more significant as
the batch size increases, demonstrating better scalability. However, same as latency, throughput
optimized at batch size = 16 for Decoder Only Model.

2. Model Comparison: Encoder-only model showed best scaling capability with increased batch sizes,
it can boost up to 6x throughput increase in Al inference. Followed by Encoder Decoder models
which can still increase 1.5x throughput.

Concurrent Users

Concurrent Users evaluates how well the system handles multiple simultaneous inference requests. Higher
concurrent user capacity means improved multi-user efficiency. In our test, we used a fixed 128 input token
length with batch sizes range from 1, 8, 32 and simulate the number of concurrent users range from 1, 4, 8
users across all three model architectures.
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Figure 3. Concurrent Users vs Batch Size by Accelerator Type - Encoder Only Model

Concurrent Users vs Batch Size by Accelerator Type
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Figure 4. Concurrent Users vs Batch Size by Accelerator Type - Decoder Only Model
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Figure 5. Concurrent Users vs Batch Size by Accelerator Type - Encoder Decoder Model
Observations:

1. Concurrent User Improvement: The chart demonstrated with higher batch size, as the number of
concurrent users increases, IPEX + AMX consistently maintains lower latencies compared to IPEX +
AVX-512 and Plain PyTorch, especially noticeable at higher concurrency level.

2. Model Comparison: Encoder-only model achieved best scaling capability with increased concurrent
users and batch sizes. Decoder Only and Encoder-Decoder Model can also handle multiple
concurrent users when choose a modest batch size.

CPU Utilization within Model

CPU Utilization within Model analyzes how efficiently 4th Gen Intel Xeon CPUs process Al workloads. We
will dive deeper to visual how IPEX + AMX optimizes the model and quantify the benefit. In our test, we
leveraged torch.profiler to visualize the each layer's CPU consumption within an model.

Firstly, let’s recap what does AMX and IPEX optimize:

e AMX (Advanced Matrix Extensions): optimizes matrix multiplication and vector computations at the
hardware level, enhancing Al, HPC, and data analytics workloads.

e |PEX (Intel Extension for PyTorch) optimizes PyTorch deep learning workloads at the software level
by improving computation efficiency on Intel CPUs.

Secondly, we breakdown each of the 3 large language models and observe their architectures. From the
following table, we discovered that Encoder only Modal benefits the most from AMX and IPEX due to its
heavy structure on transformer layers. Roughly 87% of the parameters are influenced by the optimization.
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Table 2. Parameter Distribution Across Model Architectures

Component

BERT-Base-NER

OPT-350M

m2m100_418M

Total Parameters

~110 million

~350 million

~418 million

Layers

12 Encoder layers

24 Decoder layers

12 Encoder +
12 Decoder layers

Embedding Layer

~23 million (~21%)

~35 million (~10%)

~100 million (~24%)

Transformer Layers

~96 million (~87%)

~288 million (~82%)

~336 million (~80%)

Output Layers

~2 million (~2%)

~27 million (~8%)

~17 million (~4%)

Optimizable Components

Transformer Layers (~87%)

Transformer Layers (~82%)

Transformer Layers (~80%)

Thirdly, we look one level down on the CPU work allocation for each LLM execution. We are most interested
in the matrix multiplication and addition layer. Below chart is a summary from the outputs. | pick the top 1
CPU consumption subproject during the workload.

Table 3. CPU Consumption On Matrix Calculation Across Model Architectures

Encoder Only

Decoder Only

Encoder Decoder

Model Architecture Type

Figure 6. Transformer Layer Consumption VS Model Type by Accelerator Type
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Architecture Environment Name Self CPU % Self CPU (s)
Encoder Only IPEX AMX torch_ipex::ipex_linear 55 3.36
IPEX AVX-512 torch_ipex::ipex_linear 75 12.43
PyTorch aten::addmm 60 31
Decoder Only IPEX AMX torch_ipex::ipex_linear 29 2.09
IPEX AVX-512 torch_ipex::ipex_linear 41 3.97
PyTorch aten::addmm 49 4.56
Encoder Decoder IPEX AMX torch_ipex::ipex_linear 25 5.97
IPEX AVX-512 torch_ipex::ipex_linear 33 71
PyTorch aten::addmm 28 7.93
Transformer Layer Consumption vs Model Type by Accelerator
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Observations:

e CPU Consumption Optimization: The chart and table prove IPEX + AMX consistently achieves the
lowest execution time and CPU consumption during the workload across all model architectures.

e Model Comparison: Encoder-only Model benefits the most and speed up the matrix and vector
computation up to 9x. Decoder-only Model comes next but still boost the performance by 2x.

Conclusion

This paper highlights the interplay between LLM architecture, hardware and software capability and
limitation. By leveraging Intel's AMX and IPEX optimizations, businesses can achieve significant

performance improvements. The insights provided here empower organizations to acknowledge the
distinction among various LLMs and select the right Al solution.

The following table is a summary of all the tests we conducted through the research.

Table 4. Conclusion

Architecture Configuration Avg Latency Lift* Throughput* Matrix Computation*
Encoder Only IPEX AMX 7x - 10x faster 5x - 10x more 9x faster
IPEX AVX-512 3x - 5x faster 2x - 5x more 3x faster
Decoder Only IPEX AMX 1.3x -1.8x faster 1.2x - 2x more 2.5x faster
IPEX AVX-512 1.1x - 1.3x faster 1.1x - 1.6x more 1.4x faster
Encoder Decoder IPEX AMX 1.5x - 3x faster up to 1.4x more 1.5x faster
IPEX AVX-512 1.3x - 2x faster up to 1.3x more 1.1x faster

* With Plain PyTorch Performance as Baseline

Final notes:

1. Encoder-dominant tasks (e.g., classification, text similarity) see the highest gains from AMX
acceleration because these workloads involve large-scale batch matrix multiplications, which AMX's
tile-based processing optimizes efficiently. The 7x-10x latency improvement and 9x faster matrix
computation indicate that PyTorch’s standard implementation struggles with memory-bound
operations, while AMX significantly reduces data movement overhead.

2. Decoder-Only and Encoder-Decoder models benefit from optimizations but exhibit inherent scaling
limitations due to sequential processing constraint, suggesting that autoregressive processing limit
the benefits of AMX’s tiling optimizations. The lower throughput gains further indicate that attention-
based operations may still be memory-bandwidth constrained rather than pure compute-bound.
Additional research required.

3. Intel Al optimizations significantly enhance concurrency handling, making large-scale Al inference
deployments more feasible.
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Future Work

As Al inference continues to evolve, optimizing hardware efficiency and cost-effectiveness remains a crucial
area of exploration. Future research should focus on balancing performance with server capacity, identifying
the best hardware configurations for specific business needs, and leveraging Intel-accelerated techniques to
refine cost estimates. The following areas highlight key directions for further investigation

1. Test the model accuracy with lower data precision to increase server capacity and optimize
computational efficiency.

2. Compare different hardware and pricing choices to determine the optimal infrastructure for various
business use cases.

3. Refine hardware price estimates by incorporating Intel-accelerated techniques, such as Intel Neural
Compressor and IPEX optimizations, to maximize price-to-performance efficiency.

Appendix - Test configuration

The following table lists the configuration of our server under test.

Table 5. Appendix - Test configuration

Component Description

Server Lenovo ThinkSystem SR650 V3
Processor Intel Xeon Gold 6426Y processor
Sockets 2

Cores per Socket 32

Hyperthreading Intel Hyper-Threading Technology Enabled
CPUs 64
Turbo Intel Turbo Boost Technology Enabled
Base Frequency 1.8GHz
All-core Maximum Frequency 2.8GHz
Maximum Frequency 3.0GHz
NUMA Nodes 2
Installed Memory 512GB (16x32GB DDR5 5600 MT/s [5600 MT/s])
NIC 2x Ethernet Controller E810-XXV SFP
4x 1350 Gigabit Network Connection
2x Ethernet Controller E810-C QSFP
Disk 16x 7TB Micron 7450 MTFDKCC7T6TFR
1x 894.3GB Micron 7450 MTFDKBA960TFR
BIOS ESE128C-3.30
Microcode 0x2b000620
oS Ubuntu 22.04.5 LTS
Kernel 5.15.0-131-generic
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Notices

Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your
local Lenovo representative for information on the products and services currently available in your area. Any
reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any other product, program, or service. Lenovo may have patents or pending patent applications
covering subject matter described in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.

8001 Development Drive

Morrisville, NC 27560

US.A.

Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION "AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

The products described in this document are not intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The information contained in this document does not
affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express
or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information
contained in this document was obtained in specific environments and is presented as an illustration. The result
obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was
determined in a controlled environment. Therefore, the result obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may
have been estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

© Copyright Lenovo 2025. All rights reserved.

This document, LP2167, was created or updated on March 5, 2025.
Send us your comments in one of the following ways:

e Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP2167

e Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP2167.

Boosting Al Inferencing for LLM Models on Intel CPU-Powered Lenovo Servers, Part 2 11


https://lenovopress.lenovo.com/LP2167
mailto:comments@lenovopress.com?subject=Feedback for LP2167
https://lenovopress.lenovo.com/LP2167

Trademarks

Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other

countries, or both. A current list of Lenovo trademarks is available on the Web at
https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®

ThinkEdge®

ThinkSystem®

The following terms are trademarks of other companies:
Intel®, OpenVINO®, and Xeon® are trademarks of Intel Corporation or its subsidiaries.

Other company, product, or service names may be trademarks or service marks of others.
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