
Implementing Generative AI Using Intel Xeon 6 CPUs
Planning / Implementation

Generative AI has emerged as a transformative force across industries, driving innovations in content
creation, automation, and decision-making. From large language models (LLMs) powering chatbots to AI-
generated media and drug discovery, the ability to generate human-like text, images, and solutions is
reshaping how businesses operate. Traditionally, the field of Generative AI has relied heavily on GPUs due
to their ability to perform massive parallel computations required for training and inferencing large-scale
models. However, this dependence comes with significant challenges, including high costs, limited supply,
energy consumption, and infrastructure complexity.

While frontier models such as GPT-4 and Gemini have demonstrated impressive capabilities as general-
purpose AI systems, they come with substantial drawbacks. Their tremendous computational requirements
necessitate the use of costly GPUs making them expensive to train and deploy, and their generalized nature
can limit accuracy in specialized domains. Additionally, these large-scale models are often unable to
integrate proprietary data effectively due to their closed-source nature, making them less adaptable for
enterprise applications. In contrast, domain-specific models (DSMs) offer a more efficient alternative,
focusing on specific industries or applications. DSMs also require fewer computational resources, making
them more cost-effective while achieving higher accuracy in their specified domains. Their smaller size
enables easier deployment on CPUs, and organizations can enhance their capabilities by incorporating
proprietary data through retrieval-augmented generation (RAG) or post-training fine-tuning.

Intel’s advancements in AI-optimized CPUs have further enabled efficient inferencing and, in some cases,
even training on general-purpose processors. Intel Xeon 6 processors, equipped AI acceleration
technologies (e.g., Intel AMX, AVX-512), large amounts of high-speed last-level cache, and many cores, are
increasingly capable of handling Generative AI workloads with competitive performance and lower cost. By
leveraging CPUs for AI deployment, organizations can take advantage of existing infrastructure, reduce
capital expenditures, and simplify system integration while maintaining efficiency.

This paper presents a reference architecture for deploying Generative AI models on clusters of Intel CPU
powered Lenovo servers, providing a cost-effective and scalable alternative to GPU-based systems. The
following sections will guide readers through key aspects of building such a system, including model
selection, fine-tuning, optimization for inference, and deployment strategies using vLLM and Docker.

Intel CPUs for Generative AI
Implementing Generative AI Using Intel Xeon 6 CPUs 1

https://lenovopress.lenovo.com/updatecheck/LP2249/88ce03973e73cddbd3aedb0a313537cd

Intel CPUs for Generative AI
The Intel Xeon 6 processors, integrated into Lenovo ThinkSystem SR650 V4, provide a powerful and
scalable platform for generative AI workloads. With higher core density, double the memory bandwidth, and
upgraded P-cores, Intel Xeon 6 processors ensure efficient execution of large-scale AI inference. Combined
with the SR650 V4 which offers enterprise-grade reliability and optimized power efficiency, it is an ideal
choice for AI deployments without GPU reliance.

An integral part of the Intel Xeon 6 processor, Intel Advanced Matrix Extensions (AMX) and AVX-512
significantly accelerate deep learning workloads by optimizing matrix multiplications and vectorized
computations. These enhancements improve transformer-based model execution, enabling faster and more
efficient AI inferencing on CPUs.

The OpenVINO Toolkit enables hardware-aware AI inference optimizations, including model compression,
quantization (FP16, INT8, INT4), and operator fusion. These optimizations reduce memory footprint, lower
latency, and maximize CPU performance, making OpenVINO a key enabler of cost-effective, scalable AI
solutions.

System Setup
In this section we provide steps to set up the system environment which will be useful for the rest of the
paper. This includes installing Docker, creating a Python virtual environment, and saving a Huggingface
token.

Topics in this section:

Docker Install
Python Virtual Environment
HuggingFace Setup
vLLM with OpenVINO Docker Image

Implementing Generative AI Using Intel Xeon 6 CPUs 2

Docker Install
The following steps describe how to install Docker on Ubuntu 24.10. For more details on Docker
installations, go to https://docs.docker.com/engine/install/.

1. Set up Docker’s apt directory

Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/ap
t/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:
echo \
 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/d
ocker.asc] https://download.docker.com/linux/ubuntu \
 $(. /etc/os-release && echo "${UBUNTU_CODENAME:-$VERSION_CODENAME}")
stable" | \
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update

2. Install the Docker package

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx
-plugin docker-compose-plugin

3. Verify Docker runs correctly

sudo docker run hello-world

Implementing Generative AI Using Intel Xeon 6 CPUs 3

https://docs.docker.com/engine/install/

Python Virtual Environment
We recommend installing the uv package to create a virtual python environment to avoid dependency
issues and quickly download needed python libraries. Steps are as follows:

1. Run the following in your Linux terminal:

curl -LsSf https://astral.sh/uv/install.sh | sh

uv venv openvino-env
source openvino-env/bin/activate

2. Activate Virtual environment and install requirements

source openvino_env/bin/activate
uv pip install vllm
uv pip install optimum-intel[openvino]

HuggingFace Setup
Steps to setup HuggingFace are as follows:

1. Install the huggingface Command Line Interface (CLI)

Uv pip install -q "huggingface_hub[cli]"

2. Login to your huggingface account using your token.

huggingface-cli login --token "token_here"

vLLM with OpenVINO Docker Image
The vLLM Docker image needs to be built from the source using the OpenVINO plugin.

1. Issue the following commands

git clone https://github.com/vllm-project/vllm-openvino.git
cd vllm-openvino
docker build . -t vllm-openvino-plugin-docker-img

Implementing Generative AI Using Intel Xeon 6 CPUs 4

Model selection
Several factors must be considered when selecting a model which we broadly categorize into two groups:
Application and Compute criterion. Application criteria gauge how suitable a model is for our specific
application, for instance performance on relevant datasets and multi-modal capabilities. Compute criteria
depend on the compute power available as well as model size and architecture; this includes metrics such
as throughput and latency.

We recommend looking through models available on huggingface where over a million pre-trained models
are freely available: https://huggingface.co/. Additionally, models already optimized using OpenVINO can be
found here: https://huggingface.co/OpenVINO

Topics in this section:

Application Considerations
Compute Considerations
Hands-on Testing

Application Considerations
First and foremost, a model must align with the intended application and its data characteristics. The
following factors guide the evaluation process:

Task-Specific Benchmarking: Selecting a model requires assessing its accuracy and efficiency on
relevant datasets. For example:

Question Answering: Benchmarks such as MMLU (Massive Multitask Language
Understanding) and AGIEval help to gauge model performance on textual reasoning and
question-answering tasks.
Code Generation & Reasoning: HumanEval and MBPP (Mostly Basic Python Problems)
measure a model’s ability to generate and complete code.
Translation: FLORES-200 and WMT (Workshop on Machine Translation) are widely used
benchmarks for evaluating translation quality across multiple languages, measuring accuracy
with metrics like BLEU and ChrF.

Multimodal Requirements: Some applications require models that can process and generate
multiple data types (e.g., text, images, and audio). If the use case involves text-to-image generation
(e.g., product design, creative content generation), a vision-language model like BLIP or OpenCLIP
may be necessary. If only text-based tasks are required, a language model optimized for CPU
inference, such as LLaMA-3 or Falcon, may be preferable.
Legal and Licensing Considerations: Deploying generative AI models in production requires
careful evaluation of licensing terms, intellectual property restrictions, and compliance with regulatory
frameworks. Some models, such as LLaMA-3, may have light usage restrictions for commercial
applications, while others, like Falcon or Mistral, offer permissive open-source licenses. Additionally,
AI-generated content in regulated industries (e.g., healthcare, finance) may require provenance
tracking and human oversight to mitigate risks.

In most cases, relevant benchmark performance, multi-modal capabilities, and licensing details are all
provided with the model on huggingface or an associated publication.

Implementing Generative AI Using Intel Xeon 6 CPUs 5

https://huggingface.co/
https://huggingface.co/OpenVINO

Compute Considerations
When selecting a generative AI model for deployment on CPUs, key compute-related factors must be
evaluated to ensure optimal performance. Unlike GPUs, CPUs excel in general-purpose compute and
optimized inference workflows but require careful tuning to achieve low latency and high throughput. The
following performance metrics are critical for evaluating model suitability:

Time-to-First-Token (TTFT): Measures the delay between sending an inference request and
receiving the first generated token. Lower TTFT is critical for interactive applications like chatbots
and real-time summarization. CPU-based optimizations (provided through OpenVINO) and reduced
model precision (e.g., INT8 quantization) can help minimize TTFT.
Tokens Per Second (TPS): Represents the rate at which a model generates tokens once inference
begins. Higher TPS is essential for throughput-bound applications such as document generation,
machine translation, and bulk content processing. CPU-based optimizations and reduced model
precision can again improve TPS.
Memory Footprint: Larger models require more RAM, and while more abundantly available than on
GPU deployments, large footprints can limit parallel processing capability on CPU-based
deployments.
Batch Size and Concurrency: CPUs can efficiently handle multiple concurrent inference requests if
batch processing is optimized. Workloads with high request volumes benefit from advanced batching
strategies such as continuous batching, where multiple input sequences are processed in a single
inference pass.

Hands-on Testing
To ensure a selected model meets performance expectations for a given application, hands-on testing is
essential. This section provides step-by-step guidance on setting up and conducting basic inference tests,
measuring key performance metrics such as time-to-first-token (TTFT), tokens per second (TPS), and
memory footprint on CPU-based deployments. In this demonstration, we will use an 8 billion parameter
Llama-3.1 model.

By running the vLLM image we created earlier, we can host our Llama-3.1 model as well as many other
freely available models in a containerized web server which will respond to OpenAI API requests on a
specified port.

1. First, we start the container, allowing it to share its 8000 port with the host machine and mount the
default directory where huggingface models are stored for easy access:

docker run -it --rm -p 8000:8000 \
 -v ~/.cache/huggingface:/root/.cache/huggingface \
 -e HF_TOKEN= \
 -e CUDA_VISIBLE_DEVICES="" \
 vllm-openvino-plugin-docker-img

2. With the Docker container running, we may start the vLLM engine and begin serving the model. For
this example we keep the command simple, simply listing the model we wish to host, the maximum
model length, and specify the cpu as the target device. vLLM has an enormous number of features
and a complete list of command line arguments is provided here:
https://docs.vllm.ai/en/latest/serving/engine_args.html.

vllm serve "meta-llama/Llama-3.1-8B-Instruct" \
 --max-model-len 32768 \
 --device cpu \
 --disable-log-requests

Implementing Generative AI Using Intel Xeon 6 CPUs 6

https://docs.vllm.ai/en/latest/serving/engine_args.html

3. After a few moments the model should be running on the newly created server and be capable of
receiving requests through a curl command. We can verify the web server is running and able to
receive requests using the following command in a separate command line window. It should
indicate the Llama-3.1-8B model is available.

curl http://localhost:8000/v1/models

4. Once we have verified the server is operational, we can make inferencing calls to the model using
the OpenAI Completions API. We provide an example below but encourage the reader to experiment
with their own prompts and observe both the output and the token generation speeds.

curl http://localhost:8000/v1/chat/completions \
 -H "Content-Type: application/json" \
 -d '{
 "model": "meta-llama/Llama-3.1-8B-Instruct",
 "max_tokens": 100,
 "messages": [
 {"role": "system", "content": "You are a helpful assistant.
"},
 {"role": "user", "content": "Tell me about the benefits of
using Intel Processors."}
]
}'

5. Once we have adequately determined a selected model generates meets our application
requirements, we can benchmark TTFT and TPS metrics to ensure it meets our compute
requirements. The vLLM package contains several useful benchmarking scripts, including
benchmark_serving.py. This script will make inference requests to the API using prompts from a
sample dataset and time the response.

Download vllm codebase
git clone https://github.com/vllm-project/vllm.git

Download ShareGPT Dataset
curl -L https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_
unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json -o Sh
areGPT_V3_unfiltered_cleaned_split.json

6. Now we can run the benchmarking script by specifying several command line arguments including:
the model, port, dataset path, number of prompts, and request rate. The number of prompts and
request rate determines how many API calls will be made and at what rate. An infinite rate means all
API requests are made simultaneously.

Implementing Generative AI Using Intel Xeon 6 CPUs 7

python3 vllm/benchmarks/benchmark_serving.py --host localhost --port 80
00 --endpoint /v1/chat/completions --backend openai-chat --model meta-l
lama/Llama-3.1-8B-Instruct --dataset-path ShareGPT_V3_unfiltered_cleane
d_split.json --num-prompts 10 --request-rate inf

Example Output:
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 59.23
Total input tokens: 13693
Total generated tokens: 2193
Request throughput (req/s): 0.17
Output token throughput (tok/s): 37.02
Total Token throughput (tok/s): 60.14
---------------Time to First Token----------------
Mean TTFT (ms): 1491.89
Median TTFT (ms): 1491.60
P99 TTFT (ms): 1496.59
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 79.11
Median TPOT (ms): 78.73
P99 TPOT (ms): 81.89
---------------Inter-token Latency----------------
Mean ITL (ms): 77.90
Median ITL (ms): 76.86
P99 ITL (ms): 95.70

Model Customization
After selecting a base model, LLMs can be further tailored to specific business needs. The ideal method of
optimization varies based on the specific use case as well as the amount of time and resources a company
can dedicate. The three primary methods of customization—Prompt Engineering, Retrieval-Augmented
Generation (RAG), and Fine-Tuning—fall along a spectrum of increasing complexity and effectiveness.

Topics in this section:

Prompt Engineering
Retrieval-Augmented Generation (RAG)
Fine-Tuning
Choosing the Right Approach

Implementing Generative AI Using Intel Xeon 6 CPUs 8

Prompt Engineering
Prompt Engineering is the process of crafting input prompts to guide the model’s responses without
modifying its parameters. By carefully structuring prompts, users can achieve significant improvements in
model performance with minimal effort. This technique is especially useful for applications where real-time
adaptability is required or where model modifications are impractical or costly.

Here are a couple examples using Alpaca prompting:

Translation Prompt:

Instruction: Translate the input from English to Spanish
Input: {user input}
Response:

Sentiment Analysis Prompt:

Instruction: Analyze the sentiment of the following customer review and c
lassify it as Positive or Negative.
Input: {user input}
Response:

We can enhance the effectiveness of the prompt using a technique known as few-shot learning , where the
model is provided with a few examples of the desired output format within the prompt. This helps the model
generalize better to new queries without requiring retraining.

For example:

Instruction: Analyze the sentiment of the following customer review and c
lassify it as Positive or Negative.

Example 1:
Review: "This laptop is amazing! Super fast, great battery life, and the scr
een is beautiful."
Sentiment: Positive

Example 2:
Review: "Terrible experience! It stopped working after just two days, and cus
tomer service was unhelpful."
Sentiment: Negative
Now, classify the sentiment of this review:

Input: {user input}
Response:

Implementing Generative AI Using Intel Xeon 6 CPUs 9

Retrieval-Augmented Generation (RAG)
RAG enhances generative models by integrating an external retrieval mechanism, such as a search engine
or a vector store, allowing the system to fetch relevant document chunks or structured data before
generating responses (see the figure below). This method is particularly effective when factual accuracy or
domain-specific knowledge is required.

Instead of relying solely on the model's pretrained knowledge, RAG dynamically retrieves information from
an external database or knowledge source. This allows for up-to-date and contextually relevant responses,
addressing the model’s limitations in factual recall.

Figure 1. Retrieval-Augmented Generation

Implementing Generative AI Using Intel Xeon 6 CPUs 10

https://lenovopress.lenovo.com/assets/images/LP2249/RAG.png

Fine-Tuning
Fine-tuning involves training an LLM on a domain-specific dataset to adapt its behavior, tone, and
knowledge to a particular application. Unlike Prompt Engineering and RAG, which operate without modifying
the model’s internal weights, fine-tuning directly updates the parameters of the model, leading to deeper
customization and improved performance in targeted tasks.

Fine-tuning is the most resource-intensive customization approach, but it is the best choice when:

The model needs to align with a specific domain (e.g., legal, medical, or technical fields) that is not
well-represented in its original training data.
The model must exhibit a distinct brand voice, style, or company-specific terminology.
High accuracy and consistency are required for tasks where prompt engineering and retrieval-based
methods fall short.
The model should reduce hallucinations by refining its knowledge within a limited scope.

For a more in-depth discussion on implementing fine-tuning, readers can refer to our previous paper on this
topic:
https://lenovopress.lenovo.com/lp2179-fine-tuning-llms-using-intel-xeon-cpus

Choosing the Right Approach
When deciding on a customization strategy, planners should consider the amount of training data available
as well as the cost to train and implement the method. It’s generally best to start by trying the
simplest/easiest solution, checking if it meets the application’s needs, and increasing the complexity if
needed. We list the available approaches in order of increasing complexity and direct the reader to Meta’s
recommendation flowchart shown in the figure below.

Prompt Engineering - Quick and cost-effective; works well for simple adaptations.
RAG - Useful when external knowledge is required without retraining the model.
Fine-Tuning - Necessary for deep customization, improved accuracy, and specific formatting
requirements.

Implementing Generative AI Using Intel Xeon 6 CPUs 11

https://lenovopress.lenovo.com/lp2179-fine-tuning-llms-using-intel-xeon-cpus

Figure 2. Choosing the Right Approach

Optimization for Inference
Implementing Generative AI Using Intel Xeon 6 CPUs 12

https://lenovopress.lenovo.com/assets/images/LP2249/Choosing-the-Right-Approach.png

Optimization for Inference
Once a base model has been selected and tailored, further optimizations can be applied to achieve lower
latency, higher throughput, and efficient memory utilization onboard Intel CPUs. OpenVINO provides
techniques to accelerate LLM inference on Intel CPUs. This section explores key optimization methods and
best practices for deploying LLMs efficiently using OpenVINO.

Topics in this section:

Weight Compression
Implementing Weight Compression

Weight Compression
Optimizing the memory footprint of Large Language Models (LLMs) is essential for efficient deployment,
particularly on resource-limited hardware. Weight compression reduces model size and computational
resources used, while maintaining inference accuracy by focusing exclusively on weight optimization, as
opposed to full quantization, which modifies both weights and activations.

For instance, compressing an 8-billion parameter Llama 3 model using 4-bit quantization can reduce its size
from approximately 16.1 GB to 4.8 GB, significantly lowering memory requirements without extensive
accuracy trade-offs.

Implementing Weight Compression
Compressing models is simple using the Optimum command line interface with OpenVINO support. After
being weight-compressed, models can be deployed in the same manner as the original models. We can
simply use the export openvino command and specify the model, the desired weight format, and the save
location. The weight format includes most standard formats (fp32, fp16, int8, int4).

Deeper control is available with more options listed here:
https://huggingface.co/docs/optimum/en/intel/openvino/export

optimum-cli export openvino \
 --model meta-llama/Llama-3.1-8B-Instruct \
 --weight-format int8 \
 ~/.cache/huggingface/hub/meta-llama/Llama-3.1-8B-Instruct-OV-INT8

Model Deployment and Serving
Once we have selected and optimized our model, deployment in vLLM is as simple as deploying it in a
Docker container in the same manner as we did before.

Implementing Generative AI Using Intel Xeon 6 CPUs 13

https://huggingface.co/docs/optimum/en/intel/openvino/export

Start the container
docker run -it --rm \
-p 8000:8000 \
-e CUDA_VISIBLE_DEVICES="" \
-v ~/.cache/huggingface:/root/.cache/huggingface \
vllm-openvino-plugin-docker-img

Inside the container
vllm serve "/root/.cache/huggingface/hub/meta-llama/Llama-3.1-8B-Instruct-OV-
INT8" \
 --max-model-len 32768 \
 --device cpu

At this point we have successfully deployed a containerized LLM capable of responding to OpenAI
Completion API requests. However the average user may find it cumbersome to make requests using curl
commands, so we may use OpenWebUI to provide a more natural user interface. We can again
containerize the application using Docker.

The important settings to note are the OPENAI_API_BASE_URL which should point to where we direct the
OpenAI Completion API requests and the port we host the webpage on. In this instance we can access the
OpenWebUI site at http://localhost:8080 but can be accessed remotely depending on your router
configuration.

docker run -d -p 3000:8080 \
--network host \
-v open-webui:/app/backend/data \
--name open-webui \
--restart always \
--env=OPENAI_API_BASE_URL=http://localhost:8000/v1 \
--env=OPENAI_API_KEY=token-abc123 \
--env=ENABLE_OLLAMA_API=false \
ghcr.io/open-webui/open-webui:main

After creating an admin profile, you may now service new users in a clean UI similar to that of ChatGPT with
a wide variety of features and extensions including web search and RAG search.

Implementing Generative AI Using Intel Xeon 6 CPUs 14

http://localhost:8080

Figure 3. OpenWebUI Landing Page

Performance
Here we showcase the serving performance of the Intel Xeon 5 8592+ processor with and without
OpenVINO acceleration as well as the estimated performance of the next generation Xeon 6700 with
Performance-cores. We use vllm’s benchmark_serving.py script mentioned earlier in the paper with
Llama3.1-8B using the default parameters of 1000 requests and an infinite request rate.

Our results indicate OpenVINO more than doubles the throughput over the vanilla vllm-cpu docker
container and we estimate a 68% improvement using the Intel Xeon 6700 over the previous generation.

Figure 4. vLLM Serving Comparison (requests per second)

Implementing Generative AI Using Intel Xeon 6 CPUs 15

https://lenovopress.lenovo.com/assets/images/LP2249/OpenWebUI.png
https://lenovopress.lenovo.com/assets/images/LP2249/Chart1.png

Figure 5. vLLM Serving Comparison (tokens per second)

Bill of Materials
The folllowing table provides a bill of materials for a cost-effective, CPU-only ThinkSystem SR650 V4 for AI
Inferencing.

Table 1. Bill of Materials

Part number Product Description Qty
7DGDCTO1WW Server : ThinkSystem SR650 V4 - 3yr Warranty 1
C3QK ThinkSystem SR650 V4 24x2.5" Chassis 1
C3JB ThinkSystem General Computing - Power Efficiency 1
BVGL Data Center Environment 30 Degree Celsius / 86 Degree Fahrenheit 1
C5QY Intel Xeon 6767P 64C 350W 2.4GHz Processor 2
C3QR ThinkSystem V4 2U Performance Heatsink 2
C0TQ ThinkSystem 64GB TruDDR5 6400MHz (2Rx4) RDIMM 8
5977 Select Storage devices - no configured RAID required 1
C0ZT ThinkSystem 2.5" U.2 VA 7.68TB Read Intensive NVMe PCIe 5.0 x4 HS SSD 2
C46P ThinkSystem 2U V4 8x2.5" NVMe Backplane 2
C0JK ThinkSystem M.2 B340i-2i NVMe Enablement Adapter 1
BKSR ThinkSystem M.2 7450 PRO 960GB Read Intensive NVMe PCIe 4.0 x4 NHS SSD 2
BE4U ThinkSystem Mellanox ConnectX-6 Lx 10/25GbE SFP28 2-port PCIe Ethernet Adapter 1
C62D ThinkSystem SR650/a V4 x16 Rear Direct Riser Slot 5 1
C0U3 ThinkSystem 2000W 230V/115V Titanium CRPS Premium Hot-Swap Power Supply 2
6400 2.8m, 13A/100-250V, C13 to C14 Jumper Cord 2
C3RQ ThinkSystem V4 2U Standard Fan Module 6

Implementing Generative AI Using Intel Xeon 6 CPUs 16

https://lenovopress.lenovo.com/assets/images/LP2249/Chart2.png

C2DH ThinkSystem Toolless Slide Rail Kit V4 1
BQQ2 ThinkSystem 2U V3 EIA Latch Standard 1
BPKR TPM 2.0 1
B7XZ Disable IPMI-over-LAN 1
C3K9 XClarity Platinum Upgrade v3 1
C4S2 ThinkSystem SR650 V4 Processor board,BHS,DDR5,Santorini,2U 1
B0ML Feature Enable TPM on MB 1
AVEQ ThinkSystem 8x1 2.5" HDD Filler 1
AVEP ThinkSystem 4x1 2.5" HDD Filler 1
AVEN ThinkSystem 1x1 2.5" HDD Filler 10
BPP5 OCP3.0 Filler with screw 2
C3RM ThinkSystem 2U Air duct Filler for 1P 2
AURS Lenovo ThinkSystem Memory Dummy 24
C3RJ ThinkSystem 2U 2LP Riser Cage Filler 2
C26Z ThinkSystem GNR XCC CPU HS Clip 2
C3RN ThinkSystem 2U Main Air Duct 1
C4SH HV 2U V4 General WW L1 PKG BOM 1
C3S5 ThinkSystem 2U V4 3FH Riser Cage 1
BE05 Mellanox Low-Profile Dual-Port QSFP56 PCIe Bracket L1/SBB 1
C7Y8 ThinkSystem SR650 V4 System I/O Board 1
C3RH ThinkSystem 2U 3FH Riser Cage Filler 1
C3QW ThinkSystem M.2 Signal & Power Cable ,ULP 82P-SLX4/2X10 SB, 400/400mm 1
C3R0 ThinkSystem Power Cable, 2x6+12 P-2x3+6 P, 250 mm 2
C71U Think System,PCIe Gen5 Cable, MCIOx8-MCIOx8, 250 mm 2
C6TH Think System,PCIe Gen5 Cable, MCIOx8-MCIOx8, 350 mm 6
C3T9 ThinkSystem SR650 V4 model name Label 1
C3SQ ThinkSystem SR650 V4 Agency label with ES&CE&UKCA 1
C20U ThinkSystem 2000W TT power rating label WW 1
AWF9 ThinkSystem Response time Service Label LI 1
C3TH ThinkSystem SR650 V4 Service Label for WW 1
B8K8 ThinkSystem 2U MS 24x2.5" NVMe HDD Type Label1 2
B97B XCC Label 1
AUTQ ThinkSystem small Lenovo Label for 24x2.5"/12x3.5"/10x2.5" 1
BQPS ThinkSystem logo Label 1
BZ7F ThinkSystem WW Lenovo LPK, Birch Stream 1
BE0E N+N Redundancy With Over-Subscription 1
BK15 High voltage (200V+) 1
BTTY M.2 NVMe 1
7S0XCTO8WW XClarity Controller Prem-FOD 1
SCY0 Lenovo XClarity XCC3 premier - FOD 1
5641PX3 XClarity Pro, Per Endpoint w/3 Yr SW S&S 1

Part number Product Description Qty

Implementing Generative AI Using Intel Xeon 6 CPUs 17

1340 Lenovo XClarity Pro, Per Managed Endpoint w/3 Yr SW S&S 1
3444 Registration only 1

Part number Product Description Qty

Intel Processor SKU list for AI Systems
The following table lists select Intel processor SKUs designed for use in AI systems, highlighting their core
counts and generational differences to help guide hardware selection based on performance and workload
requirements.

Table 2. Intel Processor SKU list for AI Systems

Family Processor Cores
4th Gen Intel Xeon (SPR) 8480C+ 56
 8468 48
 8468V 48
 8462Y+ 32
 6448H 32
5th Gen Intel Xeon (EMR) 8580 60
 8570 56
 8568Y+ 48
 8562Y+ 32
Intel Xeon 6 (GNR) 6960P 72
 6767P 64
 6761P 64
 6747P 48
 6740P 48
 6737P 32

References
Implementing Generative AI Using Intel Xeon 6 CPUs 18

References
For more information, see these resources:

Docker Install
https://docs.docker.com/engine/install/
OpenVINO vLLM Plugin
https://github.com/vllm-project/vllm-openvino
Optimum-cli with OpenVINO options
https://huggingface.co/docs/optimum/en/intel/openvino/export
RAG Diagram
https://en.wikipedia.org/wiki/Retrieval-augmented_generation
Meta Blog Post - Methods for adapting large language models
https://ai.meta.com/blog/adapting-large-language-models-llms/
Meta Blog Post - To fine-tune or not to fine-tune
https://ai.meta.com/blog/when-to-fine-tune-llms-vs-other-techniques/
Meta Blog Post - How to fine-tune: Focus on effective datasets
https://ai.meta.com/blog/how-to-fine-tune-llms-peft-dataset-curation/
vLLM Command Line Arguments
https://docs.vllm.ai/en/latest/serving/engine_args.html

Authors
Eric Page is an AI Engineer at Lenovo. He has 6 years of practical experience developing Machine
Learning solutions for various applications ranging from weather-forecasting to pose-estimation. He enjoys
solving practical problems using data and AI/ML.

Hapsara Sukasdadi is a seasoned IT and telecommunications industry expert. Serving as a Solutions
architect, Hapsara currently drives Lenovo's AI and Telco technical engagements, focusing on architecting
solutions in AI and Telco infrastructures. In this role, Hapsara collaborates closely with partners and
ecosystem providers. Hapsara's primary mission is to deliver comprehensive solutions, encompassing
design, planning, and integration across a spectrum of critical areas, including AI and Telecommunications
infrastructure solutions.

Related product families
Product families related to this document are the following:

Artificial Intelligence
Processors

Implementing Generative AI Using Intel Xeon 6 CPUs 19

https://docs.docker.com/engine/install/
https://github.com/vllm-project/vllm-openvino
https://huggingface.co/docs/optimum/en/intel/openvino/export
https://en.wikipedia.org/wiki/Retrieval-augmented_generation
https://ai.meta.com/blog/adapting-large-language-models-llms/
https://ai.meta.com/blog/when-to-fine-tune-llms-vs-other-techniques/
https://ai.meta.com/blog/how-to-fine-tune-llms-peft-dataset-curation/
https://docs.vllm.ai/en/latest/serving/engine_args.html
https://lenovopress.lenovo.com/software/ai
https://lenovopress.lenovo.com/servers/options/processors

Notices
Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your
local Lenovo representative for information on the products and services currently available in your area. Any
reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any other product, program, or service. Lenovo may have patents or pending patent applications
covering subject matter described in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.
8001 Development Drive
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

The products described in this document are not intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The information contained in this document does not
affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express
or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information
contained in this document was obtained in specific environments and is presented as an illustration. The result
obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was
determined in a controlled environment. Therefore, the result obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may
have been estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

© Copyright Lenovo 2025. All rights reserved.

This document, LP2249, was created or updated on July 1, 2025.

Send us your comments in one of the following ways:

Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP2249
Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP2249.

Implementing Generative AI Using Intel Xeon 6 CPUs 20

https://lenovopress.lenovo.com/LP2249
mailto:comments@lenovopress.com?subject=Feedback for LP2249
https://lenovopress.lenovo.com/LP2249

Trademarks
Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other
countries, or both. A current list of Lenovo trademarks is available on the Web at
https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®
ThinkSystem®
XClarity®

The following terms are trademarks of other companies:

Intel®, OpenVINO®, and Xeon® are trademarks of Intel Corporation or its subsidiaries.

Linux® is the trademark of Linus Torvalds in the U.S. and other countries.

Approach® is a trademark of IBM in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Implementing Generative AI Using Intel Xeon 6 CPUs 21

https://www.lenovo.com/us/en/legal/copytrade/

	Implementing Generative AI Using Intel Xeon 6 CPUs Planning / Implementation
	Intel CPUs for Generative AI
	System Setup
	Docker Install
	Python Virtual Environment
	HuggingFace Setup
	vLLM with OpenVINO Docker Image

	Model selection
	Application Considerations
	Compute Considerations
	Hands-on Testing

	Model Customization
	Prompt Engineering
	Retrieval-Augmented Generation (RAG)
	Fine-Tuning
	Choosing the Right Approach

	Optimization for Inference
	Weight Compression
	Implementing Weight Compression

	Model Deployment and Serving
	Performance
	Bill of Materials
	Intel Processor SKU list for AI Systems
	References
	Authors
	Related product families
	Notices
	Trademarks

