
Accelerating Data Science Workflows with Intel
Extension for Scikit-learn
Planning / Implementation

The first paper of this series demonstrated how Modin alleviates Pandas I/O and transformation
bottlenecks. Once data is prepared, model training becomes the next compute-intensive stage. The Intel
extension for scikit-learn and boost trees offers a drop-in upgrade—one line of code—that unlocks
multicore performance without rewriting pipelines.

Once data is cleansed, model training becomes the next computational hotspot. Rather than re-
implementing algorithms, a single call to patch_sklearn() turns Intel Extension for Scikit-learn into a true
drop-in accelerator, tapping every CPU core without touching the rest of your pipeline. Intel’s extension re-
uses scikit-learn’s Python API yet dispatches heavy-lifting to vectorized C++ kernels. This paper quantifies
those benefits.

These experiments were conducted on Lenovo ThinkSystem SR650 V4. The Lenovo ThinkSystem SR650
V4 is an ideal 2-socket 2U rack server for customers that need industry-leading reliability, management,
and security, as well as maximizing performance and flexibility for future growth. The SR650 V4 is based on
two Intel Xeon 6700-series or Xeon 6500-series processors, with Performance-cores (P-cores), formerly
codenamed "Granite Rapids-SP".

The SR650 V4 is designed to handle a wide range of workloads, such as databases, virtualization and
cloud computing, virtual desktop infrastructure (VDI), infrastructure security, systems management,
enterprise applications, collaboration/email, streaming media, web, and HPC.

Figure 1. Lenovo ThinkSystem SR650 V4

Benchmark methodology
To quantify the benefit of sklearn-intelex over vanilla scikit-learn we followed a controlled, repeatable
workflow that isolates the effects of hardware, library implementation, and workload mix. The
methodology is organized around three building blocks—metrics, algorithms & datasets, and
procedure—described below.

Topics in this section:

Metrics
Algorithms and datasets
Procedure

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 1

https://lenovopress.lenovo.com/LP2267
https://lenovopress.lenovo.com/assets/images/LP2127/SR650 V4 Santorini Security Bezel 24x25 Front Left.jpg
https://lenovopress.lenovo.com/updatecheck/LP2268/e8ff479f6551085496540f3ddb69bd58

Metrics
The list below defines the performance and quality signals we record for every experiment:

Primary– Training wall-clock time (median of 5 cold-start runs).
Guardrail– Predictive quality: accuracy (classification), Mean Square Error (regression), silhouette
(clustering).

Algorithms and datasets
We chose widely used classical algorithms paired with publicly available datasets large enough to stress a
multi core CPU yet still runable on a single server. The following table groups them by ML task and shows
which metric serves as the speed target (primary) and which protects model fidelity (guardrail).

Table 1. Algorithms and datasets

Task Algorithm Workload Primary Metric Guardrail Metric
Classification Logistic Regression CIFAR-100 Training & Inference

Time
Log Loss

KNeighborsClassifier MNIST Training & Inference
Time

Accuracy

Random Forest
Classifier

Rain in Australia Training & Inference
Time

Accuracy

Regression Random Forest
Regressor

Yolanda Training & Inference
Time

Mean Square Error

Linear Regression YearPredictionMSD Training & Inference
Time

Mean Square Error

Clustering K-Means Spoken arabic digit Training & Inference
Time

Inertia

DBSCAN Spoken arabic digit Training Time Davies-Bouldin
score

Booting Tree XGBoost Synthetic Multiclass
Data

Inference Time Accuracy

LightGBM Synthetic Multiclass
Data

Inference Time Accuracy

CatBoost Synthetic Multiclass
Data

Inference Time Accuracy

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 2

Procedure
The following run-loop is executed for each algorithm × dataset combination to generate the timing and
accuracy numbers reported later. By repeating the exact workflow twice—once with stock scikit-learn
(“vanilla”) and once with Intel’s patched version—we isolate the speed-up attributable solely to sklearn-
intelex.

1. Preprocess dataset and cache in memory.
Load the raw dataset, perform any required cleaning/encoding, and hold the resulting arrays in
memory so file-I/O never contaminates timing results.

2. Select one of the following implementations:
Intel run: call from sklearnex import patch_sklearn; patch_sklearn() to monkey-patch scikit-
learn estimators with oneDAL-backed, multi-threaded versions.
Baseline (“vanilla”) run: skip the patch—i.e., import and use scikit-learn exactly as shipped on
PyPI—so all algorithms execute on a single core.

3. Measure training & inference.
Fit the model five cold-start times, wrapping both fit() and immediate predict() calls with timer().
Record the median wall-clock duration along with the selected guard-rail metric (accuracy, MSE,
etc.)

4. Evaluate on 20 % hold-out set.
Captures guard-rail quality metrics (accuracy, MSE, silhouette, etc.)

5. Shut down the Python process between Intel and baseline runs.
Flushes OS caches and prevents warm-cache bias.

Results
This section presents the quantitative (Tables 2 & 3) and visual (Figures 2 & 3) outcomes of our
benchmarking campaign, detailing how sklearn-intelex affects training speed, inference speed, and
predictive accuracy across every algorithm–dataset pair. We first summarize aggregate speed-ups and
accuracy preservation, then highlight noteworthy patterns and edge cases observed during the
experiments.

Training time speed-ups
Inferencing time speed-ups
Accuracy preservation
Observations

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 3

Training time speed-ups
To understand where Intel Extension for scikit-learn delivers the most value, we broke training latency
down by task and algorithm.

The table below reports the median wall-clock training time (in ms) for each workload with sklearn-intelex
activated (“Intel Accelerator”) versus unmodified scikit-learn (“Vanilla Algorithm”) and the resulting
speed-up factor. Use these values in tandem with Figure 2 to see how acceleration varies across model
families.

Table 2. Training-time speed-ups

Task Algorithm Intel Accelerator (ms) Vanilla Algorithm (ms) Speed-up x
Clustering DBSCAN 5080 445,238 87.6x

K-means 558 1408 2.5x
Classifier KNeighborsClassifier 609 202 0.3x

Logistic Regression 16,748 177,503 10.6x
Randon Forest Classifier 402 3383 8.4x

Regression Linear Regression 5 184 34.7x
Randon Forest Regressor 8188 125,242 15.3x

Figure 2 shows how much Intel’s patch slashes training compared to Vanilla Sklearn

Figure 2. Training Times comparison

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 4

https://lenovopress.lenovo.com/assets/images/LP2268/Figure2.png

Inferencing time speed-ups
After training speed, the next question for production pipelines is how fast each model can deliver
predictions. We therefore timed the predict() call for every algorithm–dataset pair under the same cold-start
conditions used in the training benchmarks.

The table below summarizes the results. For each workload it lists the median wall-clock latency with Intel
Extension for scikit-learn (“Intel Accelerator”) versus unmodified scikit-learn (“Vanilla Algorithm”) and the
resulting speed-up factor.

Table 3. Inferencing-time speed-ups

Task Algorithm Intel Accelerator (ms) Vanilla Algorithm (ms) Speed-up x
Clustering K-means 1.6 7 4.5x
Classifier KNeighborsClassifier 319 7001 21.9x

Logistic Regression 81 164 2.0x
Randon Forest Classifier 504 411 0.8x

Regression Linear Regression 1 2 2.5x
Randon Forest Regressor 110 400 3.6x

Boosting Trees XGBost 1.6818 4.7616 2.8x
LightGBM 0.704 4.9127 7.0x
CatBoost 1.687 2.4129 1.4x

The following figure shows how Intel’s extension cutting inference latencies.

Figure 3. Inferencing Time comparison

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 5

https://lenovopress.lenovo.com/assets/images/LP2268/Figure3.png

Accuracy preservation
Across all tasks the accuracy/MSE deviation relative to vanilla scikit-learn remained within ±0.2%, validating
the extension’s numerical equivalence.

The following table confirms that the Intel Extension preserves model quality. Across all workloads, the
guard rail metrics (accuracy, log loss, MSE, inertia, etc.) differ from vanilla scikit-learn by ≤ 0.2 %.

Table 4. Accuracy Preservation

Algorithm Metric
Intel Extension
result

Vanilla Algorithm
result

Metric difference
%

DBSCAN Davies-Bouldin
score

0.85 0.85 0.00%

K-means Inertia 13381.46 13377.72 0.03%
KNeighborsClassifier Accuracy 0.96 0.96 0.00%
Logistic Regression Log Loss 3.71 3.71 0.05%
Randon Forest
Classifier

Accuracy 0.86 0.85 0.05%

Linear Regression MSE 36.39 36.43 0.10%
Randon Forest
Regressor

MSE 83.65 83.80 0.19%

XGBoost Accuracy 0.976 0.976 0.00%
LightGBM Accuracy 0.96 0.96 0.00%
CatBoost Accuracy 0.977 0.977 0.00%

Observations
Together, these results distill into three headline takeaways:

Training efficiency soars (Table 1).
Intel Extension for Scikit-learn cuts fit-time by double- to triple-digit factors: 6× for DBSCAN , 34.7×
for Linear Regression, 10.6× for Logistic Regression, and 8.4× for Random ForestClassifier—while
K-NN lags (0.3×) because that routine is still un-optimized.

Inference gets quicker too (Table 2).
Prediction latency shrinks 4-22× for most workloads (21.9× on K-NN, 4.5× on K-means, 3.6× on
Random ForestRegressor, 2.5× on Linear Regression). The only regression is a mild 0.8× slow-
down on Random Forest Classifier, where patch-overhead outweighs gains on the small test set.

Model quality is preserved (Table 3).
Accuracy, MSE, inertia, and Davies-Bouldin all stay within ±0.2% of vanilla scikit-learn, confirming
that the speed-ups come with virtually zero impact on predictive performance.

A single line call to Intel Extension for Scikit-learn instantly unleashes full multicore power without altering
your existing pipeline. For organizations already using pandas DataFrames and scikit-learn, migrating
preprocessing to Modin and model training to scikit-learn-intelex forms a cohesive optimization path entirely
on CPU, mitigating GPU scarcity and cost.

Conclusion

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 6

Conclusion
The combined results in Tables 1 and 2 show that optimization gains vary by phase. Algorithms such as k-
Nearest Neighbors train ∼0.3× slower with Intel Extension yet deliver ≈22× faster inference, making them
attractive for prediction-heavy workloads. In contrast, Random Forest Classifier enjoys an ≈8× training
boost but a slight 0.8× slowdown at inference on the small test set, favoring experimentation cycles over
low-latency scoring unless additional tuning is applied. Most other methods (DBSCAN, Linear/Logistic
Regression, K-means, Random Forest Regressor) accelerate both phases.

Choosing where to deploy the extension should therefore consider the complete fit to predict pipeline and
the dominant cost in production.

Overall, on a dual-socket Intel Xeon platform, Intel Extension for Scikit-learn delivers 2-87× faster training
times on mainstream ML algorithms while preserving baseline accuracy. These gains translate directly to
higher experiment throughput, faster iteration cycles, and improved server utilization for production
retraining workloads.

Future work - Part 3
Building on the speed-ups demonstrated in Part 1 and Part 2 (this document), the next stage evaluate the
end-to-end pipeline how Intel Accelerator boosts the data science projects.

The objectives of Part 3 of this series will be the following:

Evaluate the full pipeline—from Modin-accelerated data processing through Intel Extension for
Scikit-learn model training to Intel Optimization for XGBoost inference.
A comparison performance across 4th Gen, 5th Gen and 6th Gen Intel Xeon CPUs, highlighting
generation-over-generation efficiency gains.

Test environment
Our test server had the hardware and software configuration listed in the following table.

Table 5. Test environment

Component Specification
Server configuration
Platform Lenovo ThinkSystem SR650 V4
CPU Intel Xeon 6787P processor, 86 cores / 172 threads @ 3.2 GHz
Memory 16x 64 GB DDR5 RAM
OS Ubuntu 22.04.5 LTS (Linux kernel 6.8.0-59-generic)
Software components
Python Version 3.11.11
Pandas Version 2.2.3
scikit-learn Version 1.5.0
scikit-learn-intelex Version 2025.1

References
Accelerating Data Science Workflows with Intel Extension for Scikit-learn 7

http://lenovopress.lenovo.com/LP2267

References
See the following web pages for more information:

Lenovo ThinkSystem SR650 V4 product guide
https://lenovopress.lenovo.com/lp2127-thinksystem-sr650-v4-server
Lenovo ThinkSystem SR650 V4 datasheet
https://lenovopress.lenovo.com/datasheet/ds0194-lenovo-thinksystem-sr650-v4
Intel Extension for Scikit-learn – GitHub repository
https://github.com/uxlfoundation/scikit-learn-intelex/tree/main/examples/notebooks
Intel Extension for Scikit-learn documentation
https://www.intel.com/content/www/us/en/developer/tools/oneapi/scikit-learn.html
Intel oneAPI Data Analytics Library
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal.html#gs.nmjeoe
scikit-learn User Guide
https://scikit-learn.org/stable/user_guide.html

Authors
Kelvin He is an AI Data Scientist at Lenovo. He is a seasoned AI and data science professional
specializing in building machine learning frameworks and AI-driven solutions. Kelvin is experienced in
leading end-to-end model development, with a focus on turning business challenges into data-driven
strategies. He is passionate about AI benchmarks, optimization techniques, and LLM applications, enabling
businesses to make informed technology decisions.

David Ellison is the Chief Data Scientist for Lenovo ISG. Through Lenovo’s US and European AI Discover
Centers, he leads a team that uses cutting-edge AI techniques to deliver solutions for external customers
while internally supporting the overall AI strategy for the Worldwide Infrastructure Solutions Group. Before
joining Lenovo, he ran an international scientific analysis and equipment company and worked as a Data
Scientist for the US Postal Service. Previous to that, he received a PhD in Biomedical Engineering from
Johns Hopkins University. He has numerous publications in top tier journals including two in the
Proceedings of the National Academy of the Sciences.

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 8

https://lenovopress.lenovo.com/lp2127-thinksystem-sr650-v4-server
https://lenovopress.lenovo.com/datasheet/ds0194-lenovo-thinksystem-sr650-v4
https://github.com/uxlfoundation/scikit-learn-intelex/tree/main/examples/notebooks
https://www.intel.com/content/www/us/en/developer/tools/oneapi/scikit-learn.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal.html#gs.nmjeoe
https://scikit-learn.org/stable/user_guide.html

Notices
Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your
local Lenovo representative for information on the products and services currently available in your area. Any
reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any other product, program, or service. Lenovo may have patents or pending patent applications
covering subject matter described in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Lenovo (United States), Inc.
8001 Development Drive
Morrisville, NC 27560
U.S.A.
Attention: Lenovo Director of Licensing

LENOVO PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. Lenovo may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

The products described in this document are not intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The information contained in this document does not
affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express
or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information
contained in this document was obtained in specific environments and is presented as an illustration. The result
obtained in other operating environments may vary. Lenovo may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this Lenovo product, and use of those Web sites is at your own risk. Any performance data contained herein was
determined in a controlled environment. Therefore, the result obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may
have been estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

© Copyright Lenovo 2025. All rights reserved.

This document, LP2268, was created or updated on July 31, 2025.

Send us your comments in one of the following ways:

Use the online Contact us review form found at:
https://lenovopress.lenovo.com/LP2268
Send your comments in an e-mail to:
comments@lenovopress.com

This document is available online at https://lenovopress.lenovo.com/LP2268.

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 9

https://lenovopress.lenovo.com/LP2268
mailto:comments@lenovopress.com?subject=Feedback for LP2268
https://lenovopress.lenovo.com/LP2268

Trademarks
Lenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other
countries, or both. A current list of Lenovo trademarks is available on the Web at
https://www.lenovo.com/us/en/legal/copytrade/.

The following terms are trademarks of Lenovo in the United States, other countries, or both:
Lenovo®
ThinkSystem®

The following terms are trademarks of other companies:

Intel® and Xeon® are trademarks of Intel Corporation or its subsidiaries.

Linux® is the trademark of Linus Torvalds in the U.S. and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Accelerating Data Science Workflows with Intel Extension for Scikit-learn 10

https://www.lenovo.com/us/en/legal/copytrade/

	Accelerating Data Science Workflows with Intel Extension for Scikit-learn Planning / Implementation
	Benchmark methodology
	Metrics
	Algorithms and datasets
	Procedure

	Results
	Training time speed-ups
	Inferencing time speed-ups
	Accuracy preservation
	Observations

	Conclusion
	Future work - Part 3
	Test environment
	References
	Authors
	Notices
	Trademarks

